
Restructuring Basic Statistical 
Curricula: Mixing Older Analytic 
Methods with Modern Software 
Tools in Psychological Research

Modern Modeling Methods – 2024, Storrs CT, 
June 25-26, 2024 Session 8B

Emil Coman Pstat,  SEMNET ‘moderator’; James Jaccard; Sabrina Uva; 
Ana-Maria Cazan    comanus@gmail.com

Slides at https://tinyurl.com/mmmintrostat 

tinyurl.com/agecause

https://drive.google.com/file/d/1JeMcfdoJk__H5p_K9__B5SbTQ6GPqoT4/view?usp=share_link
https://tinyurl.com/mmmintrostat
https://libgen.fun/
https://sci-hub.st/


Goals

2



Best to see and do it by yourself: 
* Submitted paper http://tinyurl.com/tracepath
* All analyses results, instructions, and data are posted 
online http://tinyurl.com/pathstats  
1. Models (as graphs, e.g.) happen before RQs and Hyp’s
2. Research questions (RQ) or hypotheses (Hyp) are not 
p-hrased with statistical wording: no ‘chi-square test’ (or 
t-test) in them!
3. Statistics ‘kicks in’ after RQs and Hyp’s are laid out.

General points
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http://tinyurl.com/tracepath
http://tinyurl.com/pathstats


Variables are :
1. Categorical
2. Continuous
i. “In this book, we will distinguish between two different types of variables. A categorical variable is a characteristic of an 
individual which can be broken down into different classes or categories.
Simple examples of a categorical variable are the eye color of a student, the political affiliation of a voter, the 
manufacturer of your current car, and the letter grade in a particular class.
Typically, a categorical variable is nonnumerical, although numbers are occasionally used in classification.
The social security number of a person is an example of a categorical variable, since its main purpose is to identify or 
classify individuals. Binary variables are categorical variables for which only two possible categories exist.
A measurement variable is a number associated with an individual that is obtained by means of some measurement. 
Examples of a measurement variable include your age, your height, the weight of your car, and the distance that you 
traveled during your Thanksgiving vacation. A measurement variable will have a range of possible numerical values. A 
person’s age, for example, ranges from 0 to approximately 100.” (Albert & Rossman, 2001)  p. 5 
ii. “Throughout the text, I will use the phrase continuous for quantitative variables (even if they are not truly continuous in 
the sense of having all possible intermediate values between integers), and the phrase categorical for discrete, grouping 
variables (i.e., in which differences between specific levels are of interest, although those levels may or may not be 
ordered).” (Hoffman, 2015) p. 9 

1st step
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Albert, J. B., & Rossman, A. J. (2001). Workshop Statistics: Discovery with Data. A Bayesian approach https://drive.google.com/file/d/1ok2n3ju23wOenxws-
g7hx7HGlZe9-X6f/view?usp=sharing: John Wiley & Sons.
Hoffman, L. (2015). Longitudinal analysis: Modeling within-person fluctuation and change: Routledge.



Modeling variables, in the simplest manner
1. 2 only
2. 3
 + yes, more possibly
* Best way to proceed is the graphical view, which translates 
plain phrasing like ‘Gender → Education’ or ‘( Religiosity +  
Health.) → Anxiety’
 - Sewall Wright proposed the ‘chain rule’ called ‘path 
analysis’ to decompose relations into components:
1. Causal
2. Non-Causal

2nd  step

5Wright, S. (1921). Correlation and causation. Part I Method of path coefficients. Journal of agricultural research, 20(7), 557-585. 



Path analysis and the power of the ‘tracing rule’

“The correlation between two variables can be shown to 
equal the sum of the products of the chains of path 
coefficients along all of the paths by which the variables 
are connected.

 […] A path coefficient differs from a coefficient of correlation in having 
direction.” [1]:114-115

Wright, S. (1921). Systems of mating. I. The biometric relations between parent and offspring. Genetics, 6(2), 111. 
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Kline 2015 4th Principles and Practice of Structural Equation Modeling

What flows through a path network? ASSOCIATION
Evidence 1. Felix Elwert: DAG workshop
Evidence 2. Kline:
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https://drive.google.com/file/d/1LfTvIu8gcIEVFajFAVnxn-zO6damE7jk/view?usp=share_link


Path analysis and the ‘tracing rule’

Loehlin, J. C. (2004). Latent variable models: An introduction to factor, path, and structural equation analysis. Mahwah, NJ: Lawrence Erlbaum.

p. 8-9
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Path analysis and the ‘tracing rule’

Loehlin, J. C. (2004). Latent variable models: An introduction to factor, path, and structural equation analysis. Mahwah, NJ: Lawrence Erlbaum.

Fig. 1.7 Examples of tracing paths in a path diagram.
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How to get β for a ‘regression’ with 2 variables: X-
>Y

Basic stats 10

Regression

X
Y

Yi = βXY · Xi + 1· ui                   [easier if αY = 0]

Hence if one multiplies by Xi :
 Xi· Yi = βXY · Xi·Xi + Xi·ui

Sum across N (sample cases) & divide by N:
∑𝑖𝑖

𝑁𝑁 Xi· Yi
N  = βXY ·∑𝑖𝑖

𝑁𝑁 Xi· Xi
N  + ∑𝑖𝑖

𝑁𝑁 Xi· ui
N   Hence :

σYX = βYX · σ2
XX + σXu    So:

βXY = σYX
σ2

XX
 - σXu = Cov(Y,X)

Cov(X,X) - Cov(X,u)

βXY

1
u

With deviation scores one gets αY = 0.

Notation: u is better here than ε because it 
represents ‘ignored-for-now-other-causes’, 
not just ‘error’. 



Obtain β with Wright’s tracing rule
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“The correlation between two variables can be shown to equal the sum of 
the products of the chains of path coefficients along all of the paths by 
which the variables are connected.” [Wright:115]

Cov(YX) is  “sum of products path/structural coefficients, 
of all open pathways from X to Y”:

Cov(YX) 
𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

 σYX 
𝑊𝑊𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

 σ2
XX · β 

Hence:

β = σ𝑋𝑋𝑋𝑋

σ2
𝑋𝑋𝑋𝑋

 

X
Yβ

u
1

σ2
XX 

σ2
uu 

Wright, S. (1921). Systems of mating. I. The biometric relations between parent and offspring. Genetics, 6(2), 111. 



Jaccard, J., & Jacoby, J. (2009). Theory construction and model-building skills: A practical guide for social scientists https://www.guilford.com/books/Theory-Construction-and-Model-Building-Skills/Jaccard-
Jacoby/9781462542437 : Guilford Press.

Inferring Theoretical Relationships from the Choice of Statistical Tests [1]

FIGURE 12.1. Causal models 
underlying statistical tests (text 
example on left, generic form
on right). (a) Two Group/
Condition t-Test; (b) One-Way 
Analysis of Variance; (c) Chi-
Square Test of Independence 
and Test of Proportions; 
(d) Pearson Correlation/ 
Linear Regression: Direct 
Cause Model; (e) Pearson 
Correlation: Common Cause 
or Spurious Effect Model
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https://www.guilford.com/books/Theory-Construction-and-Model-Building-Skills/Jaccard-Jacoby/9781462542437
https://www.guilford.com/books/Theory-Construction-and-Model-Building-Skills/Jaccard-Jacoby/9781462542437


Jaccard, J., & Jacoby, J. (2009). Theory construction and model-building skills: A practical guide for social scientists https://www.guilford.com/books/Theory-Construction-and-Model-Building-Skills/Jaccard-
Jacoby/9781462542437 : Guilford Press.

Inferring Theoretical Relationships from the Choice of Statistical Tests [2]

FIGURE 12.1. (cont.) 
(f) Two-Factor
Analysis of Variance; (g) 
One-Way Analysis of 
Covariance: Mediation; 
(h) One-Way Analysis of
Covariance: Independent 
Influence and Error 
Reduction; (i) Partial 
Correlation: Mediation.
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https://www.guilford.com/books/Theory-Construction-and-Model-Building-Skills/Jaccard-Jacoby/9781462542437
https://www.guilford.com/books/Theory-Construction-and-Model-Building-Skills/Jaccard-Jacoby/9781462542437


Jaccard, J., & Jacoby, J. (2009). Theory construction and model-building skills: A practical guide for social scientists https://www.guilford.com/books/Theory-Construction-and-Model-Building-Skills/Jaccard-
Jacoby/9781462542437 : Guilford Press.

Inferring Theoretical Relationships from the Choice of Statistical Tests [3]

FIGURE 12.1. (cont.) 
(j) Partial Correlation: 
Common Cause or 
Spurious Effect Model;
(k) Multiple Regression; 
(l) Hierarchical Multiple 
Regression—Mediation.
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https://www.guilford.com/books/Theory-Construction-and-Model-Building-Skills/Jaccard-Jacoby/9781462542437
https://www.guilford.com/books/Theory-Construction-and-Model-Building-Skills/Jaccard-Jacoby/9781462542437


Variable Counts %s
FemalesA 378 73.8%
College educationB 338 66.7%

Among males 87 65.9%
Among females 250 67.4%

Means SDs
Females 0.738 0.440
College education 0.667 0.470
Religiosity 27.30 8.13
Anxiety 1.25 0.45
Age 53.90 12.00
Chronic diseases 0.76 0.89
‘Church-to see people’ C 2.21 1.27
Health rating 7.52 1.63

Descriptives of the analyzed variables 

Notes: Valid N ranges between 495-
536; A: vs. males; B: vs. less than 
college; C: ‘I go to church mainly 
because I enjoy seeing people I 
know there’ religiosity question; the 
Gender-Education covariance is 
.003, and the correlation.014; the 
Religiosity-Anxiety covariance is -
.337, and the correlation -.091.
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Two categorical variables causal model: Gender → Education

Gender Education

Notes: X = Main cause, Y = Outcome; is the residual error; σ2‘s are variances; the βY.X parameter represent the X (Gender) -> Y 
(Education) effect; the interrupted line depicts the possibility of a correlation between predictor and residual error (forced to 0: 
@0);  the model tests the hypothesis: College Males = College Females; this is the one group Female  -> College model setup; a 
two-group path model is possible, which allows for inclusion of group specific variances (and covariates too), which can allow 
for additionally testing whether σ2

Education.Females= σ2
Education.Males; the binary variables are shown with an inside interrupted line. 

εY
@1σ2

εYεY

@0

σ2
XX

β = σ𝑋𝑋𝑋𝑋

σ2
𝑋𝑋𝑋𝑋

 = -.337 / (8.13*8.13) = -0.00510
     ρ = β σ𝑋𝑋𝑋𝑋

σ𝑌𝑌𝑌𝑌
 = -0.00510 *8.130/0.453 = -0.09150

βY.X
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Model &       Statistical test                                     Coefficient Test Statistic p value
Correlational Model A: Gender   Education

Chi-squareB --- 0.096 .757
t-testC --- -0.309 .757

Log-linear modelD 0.066 0.310 .757
Correlation between observables 0.014ρ --- .757

Correlation –corrected for attenuationE 0.015 --- ---
True Correlation between latentsE 0.015 0.310 .757

Cause-Effect Model: Gender → Education
Tracing rule  0.014F --- ---

Regression/path analysis - observables 0.014 0.310 .757
Logistic regression – observables 0.066G 0.310 .757

Path analysis - latent GenderE 0.016 0.310 .757
IV estimation – health as instrument 0.431 1.380 .168

Descriptives of analyzed variables 
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Religiosity Anxiety

εY

@1

σ2
εYεY

σ2
XX

Health

a b

A three continuous variables causal model
εM

@1σ2
εMεM

c'
βY·M

Notes: The a-b-c’ notation follows the classic Barron-
Kenny labels; σ2‘s are variances; the  parameter 
represent the interaction (moderation) term effect; 
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IV - total IV->X->Y mediation 

• Blessing of car seats (in 
Latino communities): great 
example of indirect effect of 
religious blessing on say car 
accident deaths: no direct 
effect however: divinity acts 
only through human agency. 
• Effects of prayer on one’s 
own behavior. 

A priest reads a prayer before the blessing 
ceremony. Parents are standing next to their 
vehicle, and the child safety seats are in place.

If you think such instances are impossible, they are not:
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https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3222280/


‘Tracing rule’ in IV’ = total IV->X->Y mediation

X

Y

[1] Stock, J. H., & Trebbi, F. (2003). Retrospectives: Who invented instrumental variable regression? The Journal of Economic Perspectives, 17(3), 177-194.
[2]. Wright, S. (1921). Systems of mating. I. The biometric relations between parent and offspring. Genetics, 6(2), 111. 
[3]/ Wright, S., & Mcphee, H. C. (1925). An approximate method of calculating coefficients of inbreeding and relationship from livestock pedigrees https://naldc.nal.usda.gov/download/IND43966972/PDF. Journal of 
agricultural research, 31(4), 377-383. 

eY

1

σeYeY 

cov(X,Y) = σXY = βY.X + σeXeY  (
[trek Y -> X + trek Y-> eY -> eX -> X]
[this is not needed in fact]  
cov(Z,X) = σZX = βX.Z σZZ  (2)
[trek X -> ‘Z’-> σZZ  -> Z]
cov(Z,Y) = σZY = βY.X βX.Z σZZ  (3)
[trek Y -> X -> ‘Z’-> σZZ  -> Z, 2nd trek-0]
Bring in from 2nd βX.Z σZZ 
So σZY = βY.X σZX

Therefore  βY.X = σZY /σZX

Simpler?

ZβX
Z

σZZ 

βY
X

eX
1

σeXeX 

σeXeY 

0!!!

“Sewall Wright (1925 [3]) used instrumental variables to 
estimate the coefficients of a multiple equation model of corn 
and hog cycles.” [1]
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Two variable models: effects between Religiosity (Rel.) and Anxiety (Anx.)

                     

Models and effect estimates Unst. SE p Stand.
Regression/path direct effects Model: Rel. → Anx.

Tracing rule Religiosity → Anxiety -0.005 --- . --- -0.092
Religiosity → Anxiety -0.005 0.002 .038 -0.091

Latent Religiosity A  → Anxiety -0.006 0.003 .038 -0.102

‘True’ Religiosity B  → Anxiety -0.031 0.024 .188 -0.070
Bi-directional total effects C Model: Re. → Anx. &  Anx. → Rel.

Religiosity → AnxietyT 0.023 0.010 .023 0.422
Anxiety → ReligiosityT -3.946 1.162 .001 -0.219

‘True’ Religiosity B  → Latent Anxiety ,AT 0.232 0.146 .112 4.187

Latent Anxiety A  → ‘True’ Religiosity B,T -0.284 0.125 .023 -0.016

‘Instrumental variable’ effectsD Model: IV → Rel. → Anx.

Tracing rule Religiosity → Anxiety 0.036  ---  ---  ---
Religiosity → Anxiety 0.036 0.024 .134 0.403

True’ Religiosity B  → Anxiety A 0.577 0.304 .057 0.544
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Three variable models: effects from Religiosity (Rel.) to Anxiety (Anx.), 
modified by and through self-rated Health (Hlth., Mediator, or Moderator)

Models and effect estimates Unst. SE p Stand.
Co-predictors Model: ( Rel. +  Hlth.) → Anx.

Rel. → Anx. -0.007 0.004 0.086 -0.079
Hlth. → Anx. 0.000 0.001 0.902 0.006

Moderation/interaction Model: ( Rel. +  Hlth.+ Rel.*Hlth.) → Anx.
Rel. → Anx. -0.035 0.017 0.045 -0.420
Hlth. → Anx. -0.011 0.007 0.106 -0.391
Rel.*Hlth. → Anx. 0.002 0.013 0.902 0.006

Mediation Model: Rel. →  Hlth. & (Rel. +  Hlth.) → Anx. 
DE c’: Rel. → Anx. -0.007 0.004 0.086 -0.079
IE a*b: Rel. → Anx. 0.000 0.000 0.903 0.000
TE c: Rel. → Anx. -0.007 0.004 0.086 -0.079
a: Rel. →   Hlth. 0.131 0.140 0.352 0.043
b:   Hlth. → Anx. 0.000 0.001 0.902 0.006

Mediation & moderationA Model: (Rel. +  Hlth. + Rel.*Hlth.) → Anx. & Rel. →  Hlth.
Rel.* Hlth.→ Anx. 0.000 0.000 0.095 0.472
tDE c’: Rel. → Anx. -0.035 0.017 0.045 -0.367
pIE a*b: Rel. → Anx. -0.001 0.002 0.420 -0.015
TE c: Rel. → Anx. -0.036 0.018 0.047 -0.382
a: Rel. →   Hlth. 0.013 0.014 0.352 0.043
b:   Hlth.→ Anx. -0.107 0.066 0.106 -0.342
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Walk through the applied examples
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1. Start with the model, then estimate the parameters:
 i. Using the tracing rule
 ii. Using free software Onyx and Jamovi
 - R\lavaan logic in Jamovi makes clear these 2 are 
distinct operations:
I. Model specification, e.g. “X  Y”
II. Estimation: ‘fit’ the model unto the data 
http://tinyurl.com/pathstats 

http://tinyurl.com/pathstats


Walk through the applied examples
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1. Introducing learners to statistics can be done using 
modelling logic: graphic view helps

2. The ‘tracing rule’ set of simple rules allows one to 
estimate model parameters visually in a graph.

3. Simple software can make the mechanics more visible 
and intuitive (Excel-based intros are even better). 

Conclusions
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