Restructuring Basic Statistical Curricula: Mixing Older Analytic Methods with Modern Software Tools in Psychological Research

Modern Modeling Methods – 2024, Storrs CT, June 25-26, 2024 Session 8B

Slides at https://tinyurl.com/mmintrostat

Emil Coman Pstat, SEMNET 'moderator'; James Jaccard; Sabrina Uva; Ana-Maria Cazan **comanus@gmail.com**

knowledge as a human right

tinvurl.com/agecause

③ Humanity, Earth, Milky Way, Universe

Goals

Measurable Action Verbs for Writing Learning Objectives "By the end of this course/module, you should be able to"											
Lower Order Thinking Skills -				\rightarrow \rightarrow			\rightarrow Higher Order Thinking Skills				
I. Remembering II. Understanding		III. Applying		IV. Analyzing		V. Evaluating		VI. Creating			
Retrieve relevant knowledge from long-term memory.		Construct meaning from instructional messages, including oral, written, and graphic communication.		Carry out or use a procedure in a given situation.		Break material into its constituent parts and determine how the parts relate to-one another and to an overall structure or purpose.		Make judgments based on criteria and standards		Put elements together to form a coherent or functional whole; reorganize elements into a new pattern or structure.	
Verb)S	Verbs		Verbs		Verbs		Verbs		Verbs	
Arrange Choose Copy Define Duplicate Enumerate Find Label List Locate Name Match Memorize	Show Recall Recite Record Relate Repeat Spell State Tabulate Tell Trace Select	Associate Cite Classify Compare Contrast Discuss Describe Explain Illustrate Indicate Infer Interpret	Order Outline Relate Rephrase Report Research Rewrite Select Show Summarize Translate	Apply Operate Administer Calculate Perform Collect Model Compute Prepare Connect Produce Construct Convert	Deduce Record Devise Show Demonstrate Sketch Determine Teach Diagram Utilize Modify Solve Relate	Analyze Categorize Compare Classify Prioritize Correlate Simplify Contrast	Deduce Survey Devise Test Dissect Distinguish Organize Differentiate	Assess Appraise Award Judge Justify Convince Persuade Criticize Criticize Critique Prioritize Debate Prove	Defend Support Determine Validate Disprove Dispute Estimate Evaluate Influence Recommend	Adapt Invent Build Maximize Combine Minimize Compile Modify Compose Construct Originate Create Produce	Design Propose Develop Reframe Elaborate Rewrite Formulate Simplify Improve Solve Transform

General points

- Best to see and do it by yourself:
- * Submitted paper http://tinyurl.com/tracepath
- * All analyses results, instructions, and data are posted online http://tinyurl.com/pathstats
- Models (as graphs, e.g.) happen before RQs and Hyp's
 Research questions (RQ) or hypotheses (Hyp) are not p-hrased with statistical wording: no 'chi-square test' (or t-test) in them!
- 3. Statistics 'kicks in' after RQs and Hyp's are laid out.

1st step

Variables are : 1. Categorical 2. Continuous

i. "In this book, we will distinguish between two different types of variables. A categorical variable is a characteristic of an individual which can be broken down into different classes or categories.

Simple examples of a categorical variable are the eye color of a student, the political affiliation of a voter, the manufacturer of your current car, and the letter grade in a particular class.

Typically, a categorical variable is nonnumerical, although numbers are occasionally used in classification.

The social security number of a person is an example of a categorical variable, since its main purpose is to identify or classify individuals. Binary variables are categorical variables for which only two possible categories exist. A measurement variable is a number associated with an individual that is obtained by means of some measurement. Examples of a measurement variable include your age, your height, the weight of your car, and the distance that you traveled during your Thanksgiving vacation. A measurement variable will have a range of possible numerical values. A person's age, for example, ranges from 0 to approximately 100." (Albert & Rossman, 2001) p. 5 ii. "Throughout the text, I will use the phrase continuous for quantitative variables (even if they are not truly continuous in

the sense of having all possible intermediate values between integers), and the phrase categorical for discrete, grouping variables (i.e., in which differences between specific levels are of interest, although those levels may or may not be ordered)." (Hoffman, 2015) p. 9

Albert, J. B., & Rossman, A. J. (2001). Workshop Statistics: Discovery with Data. A Bayesian approach https://drive.google.com/file/d/1ok2n3ju23wOenxwsg7hx7HGlZe9-X6f/view?usp=sharing: John Wiley & Sons.

Hoffman, L. (2015). Longitudinal analysis: Modeling within-person fluctuation and change: Routledge.

2nd step

- Modeling variables, in the simplest manner 1.2 only
- 1.201
- 2.3
- + yes, more possibly
- * Best way to proceed is the graphical view, which translates plain phrasing like 'Gender → Education' or '(Religiosity + Health.) → Anxiety'
- Sewall Wright proposed the 'chain rule' called 'path analysis' to decompose relations into components: 1. Causal
- 2. Non-Causal

Wright, S. (1921). Correlation and causation. Part I Method of path coefficients. Journal of agricultural research, 20(7), 557-585.

Path analysis and the power of the 'tracing rule'

"The correlation between two variables can be shown to equal the sum of the products of the chains of path coefficients along all of the paths by which the variables are connected.

[...] A path coefficient differs from a coefficient of correlation in having direction." [1]:114-115

What flows through a path network? ASSOCIATION

Evidence 1. Felix Elwert: DAG workshop Evidence 2. Kline:

Estimation and Local Fit Testing 251

An alternative definition comes from Chen and Pearl (2015): A valid tracing does not involve colliding arrowheads, such as

$$\rightarrow \leftarrow \lor \leftarrow \rightarrow \lor$$
 or $\lor \lor$

Recall that paths blocked by a collider do not convey a statistical association between the variables at either end of the path, if the collider is not included among the covariates.

Kline 2015 4th Principles and Practice of Structural Equation Modeling

Path analysis and the 'tracing rule'

Wright's rules

Briefly, Wright showed that if a situation can be presented as a proper path diagram, then the correlation between any two variables in the diagram can be expressed as the sum of the compound paths connecting these two points, where a compound path is a path along arrows that follows three rules:

(a) no loops;

- (b) no going forward then backward;
- (c) a maximum of one curved arrow per path.

p. 8-9

Path analysis and the 'tracing rule'

Fig. 1.7 Examples of tracing paths in a path diagram.

For example, what is the correlation between variables A and D in Fig. 1.7? Two paths are legal: *a* and *fb*. A path like *hgb* would be excluded by the rule about only one curved arrow, and paths going further down the diagram like *adcgb* would violate both the rules about no forward then backward and no loops. So the numerical value of r_{AD} can be expressed as a + fb. I hope that

the reader can see that $r_{BD} = b + fa$, and that $r_{CD} = gb + ha$.

Loehlin, J. C. (2004). Latent variable models: An introduction to factor, path, and structural equation analysis. Mahwah, NJ: Lawrence Erlbaum.

How to get β for a 'regression' with 2 variables: X->Y

Regression

With deviation scores one gets $\alpha_{y} = 0$.

Notation: u is better here than ε because it represents 'ignored-for-now-other-causes', not just 'error'.

 $Y_{i} = \beta_{XY} \cdot X_{i} + 1 \cdot u_{i} \qquad [easier if \alpha_{Y} = 0]$

Hence if one multiplies by X_i : $X_i \cdot Y_i = \beta_{XY} \cdot X_i \cdot X_i + X_i \cdot u_i$

Sum across N (sample cases) & divide by N: $\frac{\sum_{i}^{N} X_{i} \cdot Y_{i}}{N} = \beta_{XY} \cdot \frac{\sum_{i}^{N} X_{i} \cdot X_{i}}{N} + \frac{\sum_{i}^{N} X_{i} \cdot u_{i}}{N}$ Hence :

$$\sigma_{\mathbf{YX}} = \beta_{\mathbf{YX}} \cdot \sigma_{\mathbf{XX}}^2 + \sigma_{\mathbf{Xu}}$$
 So:

$$\beta_{XY} = \frac{\sigma_{YX}}{\sigma_{XX}^2} - \sigma_{Xu} = \frac{Cov(Y,X)}{Cov(X,X)} - Cov(X,u)$$

Basic stats

Obtain β with Wright's tracing rule

Cov(YX) is "sum of products path/structural coefficients, of all open pathways from X to Y": Cov(YX) $\stackrel{notation}{\longleftrightarrow} \sigma_{YX} \stackrel{Wright Tracing Rule}{\longleftrightarrow} \sigma_{XX}^2 \cdot \beta$ Hence: $\beta = \frac{\sigma_{XY}}{\sigma^2}$

"The correlation between two variables can be shown to equal the sum of the products of the chains of path coefficients along all of the paths by which the variables are connected." [Wright:115]

Inferring Theoretical Relationships from the Choice of Statistical Tests [1]

FIGURE 12.1. Causal models underlying statistical tests (text example on left, generic form on right). (a) Two Group/ *Condition t-Test; (b) One-Way* Analysis of Variance; (c) Chi-Square Test of Independence and Test of Proportions; (d) Pearson Correlation/ Linear Regression: Direct Cause Model; (e) Pearson Correlation: Common Cause or Spurious Effect Model

348 CONCLUDING ISSUES

Jaccard, J., & Jacoby, J. (2009). Theory construction and model-building skills: Apractical guide for social scientists <u>https://www.guilford.com/books/Theory-Construction-and-Model-Building-Skills/Jaccard-Jacoby/9781462542437</u>: Guilford Press.

Inferring Theoretical Relationships from the Choice of Statistical Tests [2]

Jaccard, J., & Jacoby, J. (2009). Theory construction and model-building skills: Apractical guide for social scientists <u>https://www.guilford.com/books/Theory-Construction-and-Model-Building-Skills/Jaccard-Jacoby/9781462542437</u> : Guilford Press.

Inferring Theoretical Relationships from the Choice of Statistical Tests [3]

Reading and Writing about Theories 349

Jaccard, J., & Jacoby, J. (2009). Theory construction and model-building skills: A practical guide for social scientists <u>https://www.guilford.com/books/Theory-Construction-and-Model-Building-Skills/Jaccard-Jacoby/9781462542437</u> : Guilford Press.

Descriptives of the analyzed variables

Variable	Counts	%s	
Females ^A	378	73.8%	
College education ^B	338	66.7%	
Among males	87	65.9%	
Among females	250	67.4%	
	Means	SDs	
Females	0.738	0.440	
College education	0.667	0.470	
Religiosity	27.30	8.13	
Anxiety	1.25	0.45	
Age	53.90	12.00	
Chronic diseases	0.76	0.89	
'Church-to see people' ^C	2.21	1.27	
Health rating	7.52	1.63	

Notes: Valid N ranges between 495-536; ^A: vs. males; ^B: vs. less than college; ^C: 'I go to church mainly because I enjoy seeing people I know there' religiosity question; the Gender-Education covariance is .003, and the correlation.014; the Religiosity-Anxiety covariance is -.337, and the correlation -.091.

Two categorical variables causal model: Gender -> Education

$$\beta = \frac{\sigma_{XY}}{\sigma_{XX}^2} = -.337 / (8.13^*8.13) = -0.00510$$

$$\rho = \beta \frac{\sigma_{XX}}{\sigma_{YY}} = -0.00510 * 8.130 / 0.453 = -0.09150$$

Notes: X = Main cause, Y = Outcome; is the residual error; σ^{2*} s are variances; the β_{YX} parameter represent the X (Gender) -> Y (Education) effect; the interrupted line depicts the possibility of a correlation between predictor and residual error (forced to 0: @0); the model tests the hypothesis: College _{Males} = College _{Females}; this is the one group Female -> College model setup; a two-group path model is possible, which allows for inclusion of group specific variances (and covariates too), which can allow for additionally testing whether $\sigma^2_{Education.Females} = \sigma^2_{Education.Males}$; the binary variables are shown with an inside interrupted line.

Descriptives of analyzed variables

Model & Statistical test	Coefficient	Test Statistic	p value		
Correlational Model ^A :	Gender				
Chi-square ^B		0.096	.757		
t-test ^c		-0.309	.757		
Log-linear model ^D	0.066	0.310	.757		
Correlation between observables	0.014 ^p		.757		
Correlation –corrected for attenuation ^E	0.015				
True Correlation between latents ^E	0.015	0.310	.757		
Cause-Effect Model:	Gender -> Education				
Tracing rule	0.014 ^F				
Regression/path analysis - observables	0.014	0.310	.757		
Logistic regression – observables	0.066 ^G	0.310	.757		
Path analysis - latent Gender ^E	0.016	0.310	.757		
IV estimation – health as instrument	0.431	1.380	.168		

A three continuous variables causal model

Notes: The a-b-c' notation follows the classic Barron-Kenny labels; σ^2 's are variances; the parameter represent the interaction (moderation) term effect;

IV - total IV->X->Y mediation If you think such instances are impossible, they are not:

A priest reads a prayer before the blessing ceremony. Parents are standing next to their vehicle, and the child safety seats are in place.

• Blessing of car seats (in Latino communities): great example of indirect effect of religious blessing on say car accident deaths: no direct effect however: divinity acts only through human agency. • Effects of prayer on one's own behavior.

"Sewall Wright (1925 [3]) used instrumental variables to estimate the coefficients of a multiple equation model of corn and hog cycles." [1]

 $[trek Y -> X + trek Y -> e_{y} -> e_{x} -> X]$ [this is not needed in fact] $cov(Z,X) = \sigma_{7X} = \beta_{X,7} \sigma_{77}$ (2)[trek X -> 'Z'-> σ_{77} -> Z] $cov(Z,Y) = \sigma_{7Y} = \beta_{YX} \beta_{X7} \sigma_{77}$ (3)[trek Y -> X -> 'Z'-> σ_{77} -> Z, 2nd trek-0 Bring in from 2nd $\beta_{x 7} \sigma_{77}$ So $\sigma_{7Y} = \beta_{YX} \sigma_{7X}$ Therefore $\beta_{YX} = \sigma_{7Y} / \sigma_{7X}$

Simpler?

[1] Stock, J. H., & Trebbi, F. (2003). Retrospectives: Who invented instrumental variable regression? The Journal of Economic Perspectives, 17(3), 177-194.

[2]. Wright, S. (1921). Systems of mating. I. The biometric relations between parent and offspring. Genetics, 6(2), 111.

[3]/ Wright, S., & Mcphee, H. C. (1925). An approximate method of calculating coefficients of inbreeding and relationship from livestock pedigrees https://naldc.nal.usda.gov/download/IND43966972/PDF. Journal of agricultural research, 31(4), 377-383.

Two variable models: effects between Religiosity (Rel.) and Anxiety (Anx.)

Models and effect estimates	Unst.	SE	р	Stand.		
Regression/path direct effects Model:	Rel. → Anx.					
Tracing rule Religiosity → Anxiety	-0.005			-0.092		
Religiosity → Anxiety	-0.005	0.002	.038	-0.091		
Latent Religiosity ^{_A} → Anxiety	-0.006	0.003	.038	-0.102		
'True' Religiosity ^B → Anxiety	-0.031	0.024	.188	-0.070		
<u>Bi-directional total effects ^c Model:</u>	Re. → Anx. & Anx. → Rel.					
Religiosity → Anxiety ^T	0.023	0.010	.023	0.422		
Anxiety → Religiosity ^T	-3.946	1.162	.001	-0.219		
'True' Religiosity ^B → Latent Anxiety ^{,AT}	0.232	0.146	.112	4.187		
Latent Anxiety ^{_A} → 'True' Religiosity ^{B,T}	-0.284	0.125	.023	-0.016		
<u>'Instrumental variable' effects^D Model:</u>	IV → Rel. → Anx.					
Tracing rule Religiosity → Anxiety	0.036					
Religiosity → Anxiety	0.036	0.024	.134	0.403		
True' Religiosity ^B → Anxiety ^A	0.577	0.304	.057	0.544		

Three variable models: effects from Religiosity (Rel.) to Anxiety (Anx.),

modified by and through self-rated Health (HIth.. Mediator. or Moderator)

Models and effect estimates	Unst.	SE	ρ	Stand.		
<u>Co-predictors</u> Model:		(Rel. + Hlt	h.) → Anx.			
Rel. → Anx.	-0.007	0.004	0.086	-0.079		
Hlth. → Anx.	0.000	0.001	0.902	0.006		
Moderation/interaction Model:	(Rel. + Hlth.+Rel.*Hlth.) → Anx.					
Rel. → Anx.	-0.035	0.017	0.045	-0.420		
Hlth. → Anx.	-0.011	0.007	0.106	-0.391		
Rel.*Hlth. → Anx.	0.002	0.013	0.902	0.006		
<u>Mediation</u> Model:	Rel. → Hlth. & (Rel. + Hlth.) → Anx.					
DE c': Rel. → Anx.	-0.007	0.004	0.086	-0.079		
IE a*b: Rel. → Anx.	0.000	0.000	0.903	0.000		
TE c: Rel. → Anx.	-0.007	0.004	0.086	-0.079		
a: Rel. → Hlth.	0.131	0.140	0.352	0.043		
b: Hlth. → Anx.	0.000	0.001	0.902	0.006		
Mediation & moderation ^A Model:	(Rel. + Hlth. + Rel.*Hlth.) → Anx. & Rel. → Hlth.					
Rel.* Hlth.→ Anx.	0.000	0.000	0.095	0.472		
tDE c': Rel. → Anx.	-0.035	0.017	0.045	-0.367		
pIE a*b: Rel. → Anx.	-0.001	0.002	0.420	-0.015		
TE c: Rel. → Anx.	-0.036	0.018	0.047	-0.382		
a: Rel. → Hlth.	0.013	0.014	0.352	0.043		
b: Hlth.→ Anx.	-0.107	0.066	0.106	-0.342		

Walk through the applied examples

- 1. Start with the model, then estimate the parameters:
- i. Using the tracing rule
- ii. Using free software Onyx and Jamovi
 - R\lavaan logic in Jamovi makes clear these 2 are
- distinct operations:
- I. Model specification, e.g. " $X \rightarrow Y$ "
- II. Estimation: 'fit' the model unto the data

http://tinyurl.com/pathstats

Walk through the applied examples

http://tinyurl.com/pathstats

Content:

A1. Annotated appendix of models vs statistical tests, Jaccard & Jacobi

A2. Exploratory factor analysis results for the initial 14 item Religiosity measure: 7 items used

A3. Tracing rule walkthrough for Gender->College regression

- A4. Descriptives of the analyzed variables
- A5. Results of different analytic tools applied to the 'Gender -> Education' model

A6. Two variable models: effects between Religiosity (X) to Anxiety (Y)

A7. Three variable models: effects from Religiosity (X) to Anxiety (Y), modified by and

through self-rated Health (Mediator/Moderator)

8. Jamovi first steps

9. Onyx first steps

A1. Annotated appendix of models vs statistical tests, Jaccard & Jacobi

348 CONCLUDING ISSUES

Conclusions

1. Introducing learners to statistics can be done using modelling logic: graphic view helps

2. The 'tracing rule' set of simple rules allows one to estimate model parameters visually in a graph.

3. Simple software can make the mechanics more visible and intuitive (Excel-based intros are even better).