

Modern Spatial Path Analytic Tools to Investigate the Geography of Medical Debt across a US State

Modern Modeling Methods – 2024, Storrs CT, June 25-26, 2024 Session 1B: Modeling Spatial Data

Slides at https://tinyurl.com/mmdebtct

Emil Coman, PStat, SEMNET 'moderator'; Samuel Bruder comanus@gmail.com

knowledge as a human right

tinvurl.com/agecause

③ Humanity, Earth, Milky Way, Universe

General plan

- 1. Causal logic with spatial data
- 2. Spatial non-independence intuition
 - Modeling solutions
- 3. Example with N=8 regions

'Visual' causal reasoning

Figure S2. Directed acyclic graph showing selected factors involved in the lifetime risk of major adverse cardiovascular events (MACE) after childhood cancer survivorship

Rueegg, C. S. (2024). Directed acyclic graphs to foster transparency and scientific dialogue. The Lancet Oncology, 25(6), 693-694. doi:10.1016/S1470-2045(24)00271-7 Hammoud, R. A., Liu, Q., Dixon, S. B., Onerup, A., Mulrooney, D. A., Huang, I. C., . . . Armstrong, G. T. (2024). The burden of cardiovascular disease and risk for subsequent major adverse cardiovascular events in survivors of childhood cancer: a prospective, longitudinal analysis from the St Jude Lifetime Cohort Study. The Lancet Oncology, 25(6), 811-822. 6. Westreich, D., & Greenland, S. (2013). The Table 2 Fallacy: Presenting and Interpreting Confounder and Modifier Coefficients. American Journal of Figure 1 Using directed acyclic graphs to identify variables that need to be controlled for in estimating neighbourhood health effects.

Fleischer, N., & Roux, A. D. (2008). Using directed acyclic graphs to guide analyses of neighbourhood health effects: an introduction. *Journal of Epidemiology & Community Health*, 62(9), 842-846.

Causal reasoning

Figure 1. Causal Graphs for Exposure to Disadvantaged Neighborhoods with Two Waves of Follow-up Note: A_k = neighborhood context, L_k = observed time-varying confounders, U = unobserved factors, Y = outcome.

Life Expectancy and its determinants http://dagitty.net/dags.html?id=GtvlCQ

Simplest model' is: everything relates to everything: the 'saturated' model ('reference' in path analytic/SEM lingo)

Quick look:

🖄 Springer

se

A Stewart Fotheringham, Chris Brunsdon & Martin Chalrton (\mathbf{S})

CHRISTOPHER F. BAUM STAN HURN

ITATIVE

THE BASICS

RICHARD HARRIS

DATA ANALYSIS and **STATISTICS**

for Geography, Environmental Science, and Engineering

Health and Inequality

Sarah Curtis

Visual 5 Colours to print CMYK Font(s): Helve

Quick look 2:

Life Expectancy data informed model http://dagitty.net/dags.html?id=4TETpl

There are many factors to consider, or course <u>http://bit.ly/HD_causal_model</u>, including molecular: "<u>Scientists Discover a</u> <u>Molecular Switch That Controls Life Expectancy</u>"

Some troubles with spatial/regional/geographic data

A. Averaging to talk about 'typical region' does not work : i. A region with 1 resident with 100y LfEx and another with 100 residents with 80ybLfEx do not yield a 101 aggregate with 90y LfEx. **ii.** If a region's LfEx value is *identical* to its neighbors', then this is too much similarity: much like spousal data, or family data. **B.** Clustering within higher level regions due to all-belong-to-higher structure is distinct from clustering due to each-to-its-neighbors spatial structure: there are as many clusters as regions!

* Multilevel modeling does not address the spatial structure, much like it can't address e.g. friendship relational structure in student-inclassrooms settings.

Intuition for minimum Moran's I

Haggard, E. A. (1958). Intraclass correlation and the analysis of variance

there is no variation between class (i.e., each class sum equals [the same #])."

Intuition for Maximum Moran's I

squares]; rather all the variation is between the [classes [the same #])."

Haggard, E. A. (1958). Intraclass correlation and the analysis of variance

Qua	antile: pnw1519sd
	[11.1 : 18.2] (9)
	[19.3 : 27.0] (9)
	[27.0:42.7] (9)
	[46.4:83.1] (9)

% non-White

Quantile: inc10k1721 [2.71 : 5.35] (9) [5.50 : 6.38] (9) [6.47 : 7.78] (9) [8.06 : 13.13] (9)

Income \$1,000s

CT Senate Districts

% in Poverty

λu	antile: Ifexsend
	[69.340 : 73.080] (9)
	[73.386 : 76.594] (9)
	[76.877 : 79.287] (9)
	[79.872 : 82.226] (9)

Life Expectancy

Queen Contiguity Weight Matrix - CT 8 counties

Queen Contiguity Weight Matrix - CT 8 counties

GEOID10 1 2 5 9 3 5 11 5 13 7 9 5 3 1 3 9 7 3 11 3 9 9 4 3 5 1 7 11 4 15 13 3 7		
13 3 11 15 3 15 2 11 13	STANDARDIZE weights:	UCONN HEALTH HEALTH DISPARITIES INSTITUTE 15

W _{ij}	9001	9003	9005	9007	9009	9011	9013	9015	
	Fairfield	Hartford	Litchfield	Middlesex	New Haven	New London	Tolland	Windham	Neighbors
Fairfield			0.50		0.50				2
Hartford			0.20	0.20	0.20	0.20	0.20		5
Litchfield	0.33	0.33			0.33				3
Middlesex		0.33			0.33	0.33			3
New Haven	0.25	0.25	0.25	0.25					4
New London		0.25		0.25			0.25	0.25	4
Tolland		0.33				0.33		0.33	3
Windham						0.50	0.50		2 15

Spelling out the 'auto'-correlation – CT counties

"In essence, it is a cross-product statistic between a variable and its spatial lag, with the variable expressed in deviations from its mean." <u>GeoDa</u>

 $I_{Y} = \sum_{i} \sum_{j} \left[\left(W_{ij} \cdot (y_{i} - \overline{Y}) \cdot (y_{j} - \overline{Y}) \right) / S_{0} \right] / \left[\sum_{i} (y_{i} - \overline{Y})^{2} / n \right]$

with w_{ij} as the elements of the spatial weights matrix, $S_0 = \sum_i \sum_j w_{ij}$ as the sum of all the weights, and n as the number of observations. For the 8 CT counties, one then would get

The 'clustering'/spatial structure is contained in the Weight Matrix: how the 'clusters' are built:

- Each case/region has its own 'cluster'!
- 'Clusters' overlap: same regions can belong to > 1 'cluster'!
- There is cyclical influences between 'members':

Spelling out the spatial regression – CT counties

A classic regression $Y_i = \alpha + \beta \cdot X_i + \varepsilon_i$ would become for spatially connected/nonindependent data e.g., from

 $\begin{aligned} Y_{\text{Ha}} &= \alpha. + \beta. \cdot X_{\text{Ha}} + \epsilon_{\text{Ha}}, \text{ etc. to:} \\ Y_{\text{Ha}} &= \rho \cdot (1/5 \cdot Y_{\text{Li}} + 1/5 \cdot Y_{\text{NH}} + 1/5 \cdot Y_{\text{Mi}} + 1/5 \cdot Y_{\text{NL}} + 1/5 \cdot Y_{\text{To}}) + \alpha. + \beta. \cdot X_{\text{Ha}} + \epsilon_{\text{Ha}} \\ \text{which says that Ha has 5 'queen' neighbors,} \\ Y_{\text{To}} &= \rho \cdot (1/4 \cdot Y_{\text{Ha}} + 1/4 \cdot Y_{\text{Mi}} + 1/4 \cdot Y_{\text{NL}} + 1/4 \cdot Y_{\text{Wi}}) + \\ \alpha. + \beta. \cdot X_{\text{To}} + \epsilon_{\text{To}}, \text{ which says that To has 4} \end{aligned}$

The 'clustering'/spatial structure is contained in the Weight Matrix: how the 'clusters' are built:

- Each case/region IS its own 'cluster'!
- 'Clusters' overlap: same regions can belong to > 1 'cluster'!
- There is **cyclical influences** between 'members':

'Contagion'/interference & causal reasoning

* i and j are 2 'individuals': regions here.

* They 'affect' each other ('contagion'): a different type of causal confounding at work.

*** This truly turns patient /clinical/medical health research into public health research.

* The spatial structure adds to this individual DAG (direct acyclic graph) reasoning!

Hartford's LifeExp. is pushed down by its neighbors $\rho = -0.93$ t=-2.522 But it also pushed down its neighbors, with varying strengths, however.

Spatial 'auto'correlation & causal reasoning Ha: -0.19= -0.93·(1/5) To: -0.31= -0.93·(1/3)

Counties 'individuals': regions here.

Intermediary linguistic clarification

** A correlation is a same-case (region, person) & across/between-variables statistics:] 'mutual similarity' in two sets of numbers: knowing one region's X tells us something about that region's Y ** 'Auto'-correlation is on the other hand across/between-persons & same-variable statistics: knowing a region's neighboring regions' Xs tells us something about its own X

Х	Y		
% non-White	Life Exp.	County	
11.0	80.3	Litchfield	
14.2	81.1	Tolland	
14.9	79.2	Windham	Intuition
15.0	81.3	Middlesex	When ordering by 1 yerichle the
22.7	79.8	New London	when ordering by I variable, the
32.5	79.8	New Haven	all high, or all low.
34.7	82.0	Fairfield	Upper view kind of supports it: 3
35.2	80.0	Hartford	%non White (so we see a 1+3+3-
22.5	80.4	Means	crosstabulation.
Х	Y		A chi-square test would not find t
% non-White	Life Exp.	County	aionificantly different from the nu
14.9	79.2	Windham	significantly different from the nu
22.7	79.8	New London	(2+2+2+2). LifeExp
32.5	79.8	New Haven	%nWhte 0
35.2	80.0	Hartford	1
11.0	80.3	Litchfield	Lacard
14.2	81.1	Tolland	Legend:
15.0	81.3	Middlesex	LIGHT color = LOW values
34.7	82.0	Fairfield	DARK color = HIGH values
22.5	80.4	Means	

Naïve correlation

other variable's values 'cluster':

of HIGH LifeExp are in LOW +1 pattern in the binary Lo/Hi

his data pattern statistically ll/no relation data pattern

	LifeExp	0	1	
%nWhte	0	1	3	4
	1	3	1	4
		4	4	8

CT Small Claims for Medical Debt totals

	Numbers of	Total filed	Mean amount
Year	claims	amounts	per docket
2015	10,272	\$15,767,136	\$1,535
2016	12,056	\$19,382,123	\$1,608
2018	12,097	\$20,786,962	\$1,718
2019	9,185	\$16,348,638	\$1,780

The total number of medical debt small claims in CT, total and average amounts charged per defendant/patient *Notes*: The 2017 data did not cover the full year, and is not reported; the claims counts up number of unique 'dockets' or cases filed (multiple family members may appear in the same docket); amounts are shown as 'filed', not as 'awarded' the awarded amounts are 99.2% on the whole from the total amounts filed, in years 1, and 2; years 3 and 4 data did not have amounts awarded.

CT Basic descriptives across 2 geographic/regional layers

	Ν	Mean
Percent of all people who were nonWhite in 2020 _{CsTr}	820	33.8
CT Senate district	36	32.5
Average annual out of pocket per person on medical care		
in 2019 _{CsTr}	761	\$1,011
CT Senate district	36	\$ 908
CDC SVI Per capita income estimate, 2014-2018 ACS _{CsTr}	820	\$42,750
CT Senate district	36	\$42,903
Gini Index inequality of household income 2016-2020	761	0.427
CT Senate district	36	0.379
Rate of medical debt (per 10,000 residents) in 2019 _{CsTr}	759	28.18
CT Senate district	36	25.75

CsTr = Census Tracts

State Senate Districts 'auto'-correlations

 $I_{DebtRate} = .403, z = 4.186$

 I_{income} = .329, z = 3.343

 $I_{\text{\%non-White}} = .171, z = 1.923$

I: 0.1712 E[[]: -0.0286 mean: -0.0305 sd: 0.1049 z-value: 1.9226

I: 0.4030 E[[]: -0.0286 mean: -0.0334 sd: 0.1043 z-value: 4.1865

2 Predictors of Medical Debt rates in 2019

N = 36, CT state senate districts

	Naïve	Naïve	Spatial ^L	Spatia ^L
	Beta	Beta t	Beta	Beta z
% Non-				
White	0.077	0.432	0.130	1.037
Gini			-	
inequality	-91.96	-1.264	108.73 ^{SIG}	-2.120

Notes: ^L - Spatial lag regressions in GeoDa; ^{SIG} - z/t > 1.96.

Seems to suggest that CT state senate districts with more income inequality have a lower debt rate.

Conclusions

1. Estimating effects with spatial data depend require the modeling of spatial 'auto'-correlation, or non-independence.

2. Causal thinking with spatial data forces one to consider two networks: with links between cases (regions), and with links between variables.

3. Spatial data allows for aggregation and mapping of evidence aimed at legislators, or the public.