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General plan

1. Causal logic with spatial data

2. Spatial non-independence intuition
- Modeling solutions

3. Example with N=8 regions



‘Visual’ causal reasoning

Figure S2- Directed acyclic graph showing selected factors involved in the lifetime risk of major adverse cardiovascular
events (MACE) after childhood cancer survivorship
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Figure 1 Using directed acyclic graphs to identify variables that need to be controlled for in estimating neighbourhood health
effects.
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Causal reasoning

A. Hypothesized causal relationships B. Not conditioning on L, incurs confounding

C. Conditioning on L, over-controls indirect pathways D. Conditioning on L, incurs collider-stratification bias
g k Y g k

Figure 1. Causal Graphs for Exposure to Disadvantaged Neighborhoods with Two Waves of

Follow-up
Note: A = neighborhood context, L, = observed time-varying confounders, U = unobserved factors, Y =
outcome.

Wodtke, G. T., Harding, D. J., & Elwert, F. (2011). Neighborhood effects in temporal perspective: The impact of long-term exposure to concentrated disadvantage on high school graduation. American Sociological Review, 76(5), 713-736.



Life Expectancy and its determinants
http://dagitty.net/dags.html?id=GtvICQ
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Simplest model’ is: everything relates to everything: the ‘saturated’ model

(‘reference’ in path analytic/SEM lingo)
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Life Expectancy data informed model
http://dagitty.net/dags.html?id=4TETpl
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There are many factors to consider, or course
http://bit.ly/HD causal model , including molecular: “Scientists Discover a
Molecular Switch That Controls Life Expectancy”
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Some troubles with spatial/regional/geographic data

A. Averaging to talk about ‘typical region’ does not work :

I. Aregion with 1 resident with 100y LfEx and another with 100
residents with 80ybLfEx do not yield a 101 aggregate with 90y LfEX.
il. If a region’s LfEXx value is identical to its neighbors’, then this is
too much similarity: much like spousal data, or family data.

B. Clustering within higher level regions due to all-belong-to-higher
structure is distinct from clustering due to each-to-its-neighbors
spatial structure: there are as many clusters as regions!

* Multilevel modeling does not address the spatial structure, much
like it can’'t address e.g. friendship relational structure in student-in-
classrooms settings.

10



Intuition for minimum Moran’s |

Haggard, E. A. (1958). Intraclass correlation and the analysis of variance

“all the variation is within classes [neighbors of red squares], with the result that
there is no variation between class (i.e., each class sum equals [the same #]).”


https://drive.google.com/file/d/15sqL7oOhYtLar-iUScwg6r7PG0sB2l8_/view?usp=share_link

Intuition for Maximum Moran’s |

Haggard, E. A. (1958). Intraclass correlation and the analysis of variance

| |

“there is no variation between the scores in any of the [classes [neighbors of red
squares]; rather all the variation is between the [classes [the same #]).”



https://drive.google.com/file/d/15sqL7oOhYtLar-iUScwg6r7PG0sB2l8_/view?usp=share_link
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Queen Contiguity Weight Matrix - CT 8 counties
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Queen Contiguity Weight Matrix - CT 8 counties
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Spelling out the ‘auto’-correlation — CT counties

“In essence, 1t 1s a cross-product statistic between a variable and its spatial lag, with the variable
expressed in deviations from its mean.” GeoDa

Ly =25 25 [(Wy(vi-Y ) (yj-Y)V So V[ (yi-Y )*/n]

with w;; as the elements of the spatial weights matrix, S;=»» ;w;; as the sum of all the weights, and n
as the number of observations. For the 8 CT counties, one then would get

(Ha[1/5'(y|ia' Y)'(Yy' Y)] +1/5(Yya- Y)'(yMi' Y)] +1/5(Yya- Y)'(yNH' Y)] +1/5-(Yya- Y)'(yNL' Y)]+

1/5-(Vpa V) (o~ Y)1 + -
[H...] +_[Fa...]+[NE...]+[Mi...]+[_T°...]+[NL...]+[VV‘...] +)/8) / K e
([(Yea~ Y)*+(Yha V)2H+es + (Y- Y)?1/ 8) W A= -

5 U

M L\
s \J \

Fa f L —

(if we use the standardized weights, to sum up to 1 per case)

The ‘clustering’/spatial structure 1s contained in the Weight Matrix: how the ‘clusters’” are buult:
- Each case/region has its own ‘cluster’!
- ‘Clusters’ overlap: same regions can belong to > 1 ‘cluster’!

- There 1s cyclical influences between ‘members’:

16


https://geodacenter.github.io/workbook/5a_global_auto/lab5a.html

Spelling out the spatial regression — CT counties

A classic regression Y; = a. + .- X, + € would become for spatially connected/nonindependent
data e.g., from

Yya = 0. + B.- Xy, T €4, €tC. to:

Yua =P (1/5- Y+ 1/5Yygt 1/5 Yy + 1/5- Yy + 1/5:Yq) + . + B- Xy, + €la

which says that Ha has 5 ‘queen’ neighbors,
Yio =P (1/4-Yya + 1/4-Yy + 1/4- Yy + 1/4-Yy) +
a. + B.- Xy, + €1, , Which says that To has 4
‘queen’ neighbors, etc.

The ‘clustering’/spatial structure is contained in the Weight
Matrix: how the ‘clusters’ are built:
- Each case/region IS its own ‘cluster’!

- “Clusters’ overlap: same regions can belong to > 1 ‘cluster’! "
- There 1s cyclical influences between ‘members’:

17



‘Contagion’/interference & causal reasoning

*iandj are 2 ‘individuals’ regions here. Fig. 5.a
* They ‘affect’ each other (‘contagion’): a / \
different type of causal confounding at work. Ci > Ai > Yi

*** This truly turns patient /clinical/medical
health research into public health research.

* The spatial structure adds to this individual (.
DAG (direct acyclic graph) reasoning! J

> Y,
J
/

> A
\

Ogburn, E. L., & VanderWeele, T. J. (2014). Causal Diagrams for Interference. Statistical Science, 29(4), 559-578. 18



Tolland

obs 09013 has 3 neighbors: 09011, 09015, 09003

19



Harttord

Y. = p-(1/5-Yii+ 1/5-Yhu + 1/5-Yyt + 1/5-YRl + 1/5-Yag) + @ + B.- X, + €4

obs 09003 has 5 neighbors: 09011, 09005, 09013, 09007, 09009

20
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Intermediary linguistic clarification

** A correlation is a same-case (region, person)

& across/between-variables statistics:] ‘mutual
similarity’ in two sets of numbers: knowing one
region’s X tells us something about that region’s Y

** ‘Auto’-correlation is on the other hand
across/between-persons & same-variable
statistics: knowing a region’s neighboring regions’
Xs tells us something about its own X

23
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Upper view kind of supports it: 3 of HIGH LifeExp are in LOW
%non_White (so we see a 1+3+3+1 pattern in the binary Lo/Hi
crosstabulation.

A chi-square test would not find this data pattern statistically

significantly different from the null/no relation data pattern
(2+2+2+2).

LifeExp 0 1
%nWhte 0 1 3 4
1 3 1 4
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LIGHT color = LOW values
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Life Expectancy(% nonWhite residents) in CT, by county
Life Expectancy
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Source: CDC Life Expectancy data 6/22/24 4



Life Expectancy(% nonWhite residents) in CT, by county
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CT Small Claims for Medical Debt totals

Numbers of Total filed Mean amount
Year claims amounts per docket

10,272 $15,767,136 $1,535
12,056  $19,382,123 $ 1,608
12,097 $20,786,962 $1,718
9,185 $16,348,638 $1,780

The total number of medical debt small claims in CT, total and average amounts charged per defendant/patient
Notes: The 2017 data did not cover the full year, and is not reported; the claims counts up number of unique
‘dockets’ or cases filed (multiple family members may appear in the same docket); amounts are shown as ‘filed’, not
as ‘awarded’ the awarded amounts are 99.2% on the whole from the total amounts filed, in years 1, and 2; years 3

and 4 data did not have amounts awarded. :
7



CT Basic descriptives across 2 geographic/regional layers

Percent of all people who were nonWhite in 2020 820 33.8

CT Senate district 36 32.5

Average annual out of pocket per person on medical care

761 $1,011

36 $ 908
CDC SVI Per capita income estimate, 2014-2018 ACS 820 $42.750
36 $42,903

ini ' ' ' 761 0.427

36 0.379

Rate of medical debt (per 10,000 residents) in 2019 759 28.18

CT Senate district 36 25.75

CsTr = Census Tracts
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Small Claims medical debt in 2019 in CT by State Senate district, per 10,000 residents,
CT State with State Senators last name as of Dec. 2023

Senate Kissel

Districts Seminara Gordon
e

Somers

Needleman

oore
§ Marunay Small claims per 10,000 residents

Gaston
[ ]29-146
[ 146 - 199

[ 199 - 418

Data Source: CT Judicial System [ 418 - 988
Data processing and visualization: Emil Coman,
Health Disparities Institute, UConn Health - 988 - 1403
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2 Predictors of Medical Debt rates in 2019

N = 36, CT state senate districts

Beta |[Betat Beta Beta z

Wi[80.077 0432 0130  1.037
T IE1-91.96 -1.264 108.73SI6 -2.120

Notes: ' - Spatial lag regressions in GeoDa; 3¢ - z/t > 1.96.

Seems to suggest hat C T State senate districts with more income
Inequality have a lower debt rate.
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Conclusions

1. Estimating effects with spatial data depend require the
modeling of spatial ‘auto’-correlation, or non-
Independence.

2. Causal thinking with spatial data forces one to consider
two networks: with links between cases (regions), and
with links between variables.

3. Spatial data allows for aggregation and mapping of
evidence aimed at legislators, or the public.
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