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| Theoretical Statements and Mathematical Objects

Substantive hypotheses are often framed as high-level theoretical statements - e.g., “early adver-
sity delays school achievement” or “our intervention de-couples the association between stress and
achievement” - which can be difficult to match to a specific statistical model.
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| Theoretical Statements and Mathematical Objects

Substantive hypotheses are often framed as high-level theoretical statements - e.g., “early adver-
sity delays school achievement” or “our intervention de-couples the association between stress and
achievement” - which can be difficult to match to a specific statistical model.

= compounded by standardized linear parameter models which limit flexible model building

= my research seeks to develop models that are directly linked to theoretical questions
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| Linear Estimation with Nonlinear Inference (LENTI)

Deriving models of change with interpretable
parameters: Linear estimation with nonlinear
inference

Ethan M. McCormick*!

Methodology & Statistics Department, Institute of Psychology, Leiden University, Leiden,
Netherlands

December 10, 2023

Abstract

In the modeling of change over time, there is often a disconnect between devel-
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| Sex-Specific Delays in Learning?

Sex-Specific Trajectories of Learning Performance
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Vi = Bo + Bixsi + Baxs; + B3x;

Ethan M. McCormick June 25, 2024 4/23



E———
| Sex-Specific Delays in Learning?

Sex-Specific Trajectories of Learning Performance
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Vi = Bo + Bixsi + Baxs; + B3x;
None of these parameters directly model the peak of the curve
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| Defining Nonlinear Equations
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| Defining Nonlinear Equations
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| Negative Affect Across the Adult Lifespan
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| Negative Affect: Linear and Nonlinear Parameters

Fitting Linear and Nonlinear Parameter Cubic Models

Linear Parameter Model Nonlinear Parameter Model
Bo —2.288%* (0.802) XN 57.428%%%* (2.162)
B 0.174%%* (0.052) YN —-0.050 (0.051)
i3 —0.004*** (0.001) ) 21.508*** (1.711)
B3 2.04 x 107 (6.10 x 107°) h —0.406*** (0.068)
Num.Obs. 69 69
R? 0.355
AIC 76.6 76.6
BIC 87.7 87.7
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| Interpretable Parameters Help Define More Interesting Models
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| Benefits of Interpretable Parameters

Testing meaningful - and specifically articulated - theoretical hypotheses about change over time

= Timing of inflections (e.g., peaks/troughs/plateaus) [6], time-to-criterion [5], acceleration [4]

Incorporating predictors of change [3, 7]

Investigating distal outcomes associated with individual differences in change over time [8]
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| Why are Nonlinear Models Not the Default?

Not defined for all values of the parameters

yi = a, = (@ - ao) (2 - 1)

STy

Vii = YN —

() =3 (2]
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| Why are Nonlinear Models Not the Default?

No hierarchy of parameters for random effects

Vi = Bo + Bixsi + ﬂzxf,- + ﬂax?i

ST

Vii = YN —

(52) -3 (252)
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| Why are Nonlinear Models Not the Default?

Linear Model Estimation
c&) =

Nonlinear Model Estimation
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| Solutions: Linear Estimation, Nonlinear Inference (LENT)

Vi = Po + P1xii + ,Bzxf,- + ﬁsx?i
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Vi = Po + P1xii + ,Bzxf,- + ,3336?,-

|2 -3 ()
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| Solutions: Linear Estimation, Nonlinear Inference (LENT)

Vi = Bo + Pixs + ,3236?,- + ﬁsxfl-

Fixed Effects
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| Solutions: Linear Estimation, Nonlinear Inference (LENT)

Vi = Po + P1x + ,3236?,- + ﬁsxfi

Random Effects
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| Solutions: Linear Estimation, Nonlinear Inference (LENT)

LENI Approach to Fixed Effects Estimation

Pop. 6 Linear Estimates LENI Estimates Nonlinear Estimates
Cubic Model
XN 0 | Bo 9.994 (0.139) xv  —0.002 (0.116) | xy —0.002 (0.116)
N 10 | B —1.000 (0.080) | yny  9.996 (0.094) | yv  9.996 (0.094)
) 3 | B 225x107*(0.013) | 6 3.015(0.107) | 6 3.015 (0.107)
h -2 | B 0.037 (0.005) h  -2.010(0.130) | —2.010(0.130)
R> 05 0.506
BIC 921.90 921.90
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| Sex-Specific Delays in Peak Learning? Perhaps not

Sex-Specific Trajectories of Learning Success
a, = 0.961 (0.006)***

T mate = —0.003 (0.009),7.5.
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Linearized SEM: Polynomials and Beyond

LENT approach can be applied to mixed-eftects polynomial models [6]
= equivalence between the curves should result in identical fit (assuming convergence)

= defined transformations can be applied to the linear fitted model, including fixed effects,
random effects*, and conditional effects of covariates

= limited functions with linear and nonlinear versions

Structured latent curve model [2, 1, 9] approach can offer additional flexibility and target functions
= Does not require a linearly equivalent form

= Uses a Taylor series approach for linearized approximation
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| Standard Cubic Growth Model

Vi = Bo + Bixs + ,3296?,- + ,3336;}

Y1 V2 V3 Va Ys Ye
O b N 0 & |

Ethan M. McCormick June 25, 2024 17/23



| Alternative Cubic Growth Model

yi =y - [ (25) = 3 (55)

[ 3h(57 — (x —xw)) ] [ 1 I3h(x —ae) (G —xw? —8) [ (G —xw) — 52)]
253 )" 257 JU 2573

|y1| |}’z| |)’3| |3’4| |J’5| |Y6|

| b & & b &
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| Extending the SLCM to include Covariates and Distal Outcomes

___________________ outcomes

B ————
ONONONO!
\ !

- -

lsh(aZ—(x—m*) ] [ 1 I3h(X—XN)((X—KN)z—52) ]l(x—xN)(<x—x~)2—6*)]
257 A" 257 JC 25%

] [»] [»] [»] [»] [»]
R T N N S

Ethan M. McCormick June 25, 2024 19/23



| SCLM for the Multiphase Cubic

A B Computing the floor and ceiling of x,;

median(xy - 8, X, Xy +8)
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| Adversity-informed Trajectories of Cortical Thinning

B. Adversity-Informed Trajectories of Cortical Thickness
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|
What'’s Does this Allow Us to Do

Aligning statistical models with research hypotheses is a challenge, but nonlinear models can help.
= Challenges of estimation can be solved through linear estimation and transformation.

= Polynomial models have many options, while fully nonlinear models require moving to SEM
(for now)

Ethan M. McCormick June 25, 2024 22/23



What'’s Does this Allow Us to Do

Aligning statistical models with research hypotheses is a challenge, but nonlinear models can help.
= Challenges of estimation can be solved through linear estimation and transformation.

= Polynomial models have many options, while fully nonlinear models require moving to SEM
(for now)

Collaboration and future work

= If you see opportunities for nonlinear models in your own area of work, please get in touch
= AMPPS tutorial paper

= Looking to hire a student for Fall 2025 to continue this and other methodological work at the
University of Delaware
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