

Deriving Models of Change with Interpretable Parameters: Linear Estimation with Nonlinear Inference

Ethan M. McCormick
Department of Methodology & Statistics
e.m.mccormick@fsw.leidenuniv.nl

Education Statistics and Data Science emccorm@udel.edu

Modern Modeling Methods - Storrs, CT, June 2024

Theoretical Statements and Mathematical Objects

Substantive hypotheses are often framed as high-level theoretical statements - e.g., "early adversity delays school achievement" or "our intervention de-couples the association between stress and achievement" – which can be difficult to match to a specific statistical model.

| Theoretical Statements and Mathematical Objects

Substantive hypotheses are often framed as high-level theoretical statements – e.g., "early adversity delays school achievement" or "our intervention de-couples the association between stress and achievement" – which can be difficult to match to a specific statistical model.

- compounded by standardized linear parameter models which limit flexible model building
- my research seeks to develop models that are directly linked to theoretical questions

| Linear Estimation with Nonlinear Inference (LENI)

Deriving models of change with interpretable parameters: Linear estimation with nonlinear inference

Ethan M. McCormick*1

¹Methodology & Statistics Department, Institute of Psychology, Leiden University, Leiden, Netherlands

December 10, 2023

Abstract

In the modeling of change over time, there is often a disconnect between developmental theories advanced in substantive research and statistical models specified in longitudinal analysis. That is, theory is understood and advanced in terms of meaning-

Sex-Specific Delays in Learning?

Sex-Specific Delays in Learning?

Sex-Specific Trajectories of Learning Performance

$$y_{ti} = \beta_0 + \beta_1 x_{ti} + \beta_2 x_{ti}^2 + \beta_3 x_{ti}^3$$

Sex-Specific Delays in Learning?

Sex-Specific Trajectories of Learning Performance

$$y_{ti} = \beta_0 + \beta_1 x_{ti} + \beta_2 x_{ti}^2 + \beta_3 x_{ti}^3$$

None of these parameters directly model the peak of the curve

Defining Nonlinear Equations

| Defining Nonlinear Equations

$$y_{ti} = \alpha_y - (\alpha_y - \alpha_0) \left(\frac{x_{ti}}{\alpha_0} - 1\right)^2$$

| Defining Nonlinear Equations

 $y_{ti} = \alpha_y - \left(\alpha_y - \alpha_0\right) \left(\frac{x_{ti}}{\alpha_0} - 1\right)^2$

| Defining Nonlinear Equations

$$y_{ti} = \alpha_y - (\alpha_y - \alpha_0)(\frac{x_{ti}}{\alpha_0} - 1)^2$$

$$y_{ti} = y_N - \frac{h}{2} \left[\left(\frac{x_{ti} - x_N}{\delta} \right)^3 - 3 \left(\frac{x_{ti} - x_N}{\delta} \right) \right]$$

| Negative Affect Across the Adult Lifespan

| Negative Affect: Linear and Nonlinear Parameters

Fitting Linear and Nonlinear Parameter Cubic Models									
Lir	near Parameter Model	Non	Nonlinear Parameter Model						
$oldsymbol{eta}_0$	-2.288** (0.802)	x_N	57.428*** (2.162)						
$oldsymbol{eta}_1$	0.174** (0.052)	y_N	-0.050 (0.051)						
$oldsymbol{eta}_2$	-0.004*** (0.001)	δ	21.508*** (1.711)						
β_3	$2.04 \times 10^{-5} ** (6.10 \times 10^{-6})$	h	-0.406*** (0.068)						
Num.Obs.	69		69						
R^2	0.355								
AIC	76.6		76.6						
BIC	87.7		87.7						

| Interpretable Parameters Help Define More Interesting Models

Benefits of Interpretable Parameters

Testing meaningful – and specifically articulated – theoretical hypotheses about change over time

• Timing of inflections (e.g., peaks/troughs/plateaus) [6], time-to-criterion [5], acceleration [4]

Incorporating predictors of change [3, 7]

Investigating distal outcomes associated with individual differences in change over time [8]

| Why are Nonlinear Models Not the Default?

Not defined for all values of the parameters

$$y_{ti} = \alpha_y - (\alpha_y - \alpha_0) \left(\frac{x_{ti}}{\alpha_0} - 1\right)^2$$

$$y_{ti} = y_N - \frac{h}{2} \left[\left(\frac{x_{ti} - x_N}{\delta} \right)^3 - 3 \left(\frac{x_{ti} - x_N}{\delta} \right) \right]$$

| Why are Nonlinear Models Not the Default?

No hierarchy of parameters for random effects

$$y_{ti} = \beta_0 + \beta_1 x_{ti} + \beta_2 x_{ti}^2 + \beta_3 x_{ti}^3$$

$$y_{ti} = y_N - \frac{h}{2} \left[\left(\frac{x_{ti} - x_N}{\delta} \right)^3 - 3 \left(\frac{x_{ti} - x_N}{\delta} \right) \right]$$

| Why are Nonlinear Models Not the Default?

$$y_{ti} = \beta_0 + \beta_1 x_{ti} + \beta_2 x_{ti}^2 + \beta_3 x_{ti}^3$$

$$y_{ti} = \beta_0 + \beta_1 x_{ti} + \beta_2 x_{ti}^2 + \beta_3 x_{ti}^3$$

$$y_N - \frac{h}{2} \left[\left(\frac{x_{ti} - x_N}{\delta} \right)^3 - 3 \left(\frac{x_{ti} - x_N}{\delta} \right) \right]$$

$$y_{ti} = \beta_0 + \beta_1 x_{ti} + \beta_2 x_{ti}^2 + \beta_3 x_{ti}^3$$

Fixed Effects

$$x_N = \frac{-\beta_2}{3\beta_3}$$
 $y_N = \beta_0 - \frac{\beta_1\beta_2}{3\beta_3} + \frac{2\beta_2^3}{27\beta_3^2}$ $\delta = \frac{\sqrt{\beta_2^2 - 3\beta_3\beta_1}}{3\beta_3}$ $h = -2\beta_3\delta$

$$\mathsf{ACOV}\left(f(x_N,y_N,\delta,h)\right) \approx \mathbf{J}_{f(x_N,y_N,\delta,h)}' \; \mathsf{ACOV}(\pmb{\beta}) \; \mathbf{J}_{f(x_N,y_N,\delta,h)}$$

$$y_N - \frac{h}{2} \left[\left(\frac{x_{ti} - x_N}{\delta} \right)^3 - 3 \left(\frac{x_{ti} - x_N}{\delta} \right) \right]$$

$$y_{ti} = \beta_0 + \beta_1 x_{ti} + \beta_2 x_{ti}^2 + \beta_3 x_{ti}^3$$
Random Effects
$$T_{f(x_N, y_N, \delta, h)} \approx J'_{f(x_N, y_N, \delta, h)} T_{\beta} J_{f(x_N, y_N, \delta, h)}$$

$$x_N = \frac{-\beta_2}{3\beta_3} \quad y_N = \beta_0 - \frac{\beta_1 \beta_2}{3\beta_3} + \frac{2\beta_2^3}{27\beta_3^2} \quad \delta = \frac{\sqrt{\beta_2^2 - 3\beta_3 \beta_1}}{3\beta_3} \quad h = -2\beta_3 \delta$$

$$ACOV (f(x_N, y_N, \delta, h)) \approx J'_{f(x_N, y_N, \delta, h)} ACOV(\beta) J_{f(x_N, y_N, \delta, h)}$$

$$y_N = \frac{h}{2} \left[\left(\frac{x_{ti} - x_N}{\delta} \right)^3 - 3 \left(\frac{x_{ti} - x_N}{\delta} \right) \right]$$

LENI Approach to Fixed Effects Estimation

Pop	ο. θ	Linear Estimates		LENI Estimates		Nonlinear Estimates				
Cubic Model										
x_N	0	$oldsymbol{eta}_0$	9.994 (0.139)	x_N	-0.002 (0.116)	x_N	-0.002 (0.116)			
y_N	10	$oldsymbol{eta}_1$	-1.000 (0.080)	y_N	9.996 (0.094)	y_N	9.996 (0.094)			
δ	3	eta_2	$2.25 \times 10^{-4} \ (0.013)$	δ	3.015 (0.107)	δ	3.015 (0.107)			
h	-2	β_3	0.037 (0.005)	h	-2.010 (0.130)	h	-2.010 (0.130)			
R^2	0.5		0.506							
BIC			921.90				921.90			

| Sex-Specific Delays in Peak Learning? Perhaps not

Sex-Specific Trajectories of Learning Success

Linearized SEM: Polynomials and Beyond

LENI approach can be applied to mixed-effects polynomial models [6]

- equivalence between the curves should result in identical fit (assuming convergence)
- defined transformations can be applied to the linear fitted model, including fixed effects, random effects*, and conditional effects of covariates
- limited functions with linear and nonlinear versions

Structured latent curve model [2, 1, 9] approach can offer additional flexibility and target functions

- Does not require a linearly equivalent form
- Uses a Taylor series approach for linearized approximation

Standard Cubic Growth Model

| Alternative Cubic Growth Model

| Extending the SLCM to include Covariates and Distal Outcomes

SCLM for the Multiphase Cubic

Adversity-informed Trajectories of Cortical Thinning

What's Does this Allow Us to Do

Aligning statistical models with research hypotheses is a challenge, but nonlinear models can help.

- Challenges of estimation can be solved through linear estimation and transformation.
- Polynomial models have many options, while fully nonlinear models require moving to SEM (for now)

What's Does this Allow Us to Do

Aligning statistical models with research hypotheses is a challenge, but nonlinear models can help.

- Challenges of estimation can be solved through linear estimation and transformation.
- Polynomial models have many options, while fully nonlinear models require moving to SEM (for now)

Collaboration and future work

- If you see opportunities for nonlinear models in your own area of work, please get in touch
- AMPPS tutorial paper
- Looking to hire a student for Fall 2025 to continue this and other methodological work at the University of Delaware

Our Promise to Youth

Questions?

Ethan M. McCormick
Department of Methodology & Statistics
e.m.mccormick@fsw.leidenuniv.nl

Education Statistics and Data Science emccorm@udel.edu

[1] Blozis, S. A.

Structured Latent Curve Models for the Study of Change in Multivariate Repeated Measures. *Psychological Methods* 9, 3 (2004), 334–353.

[2] Browne, M. W.

Structured latent curve models.

In *Multivariate Analysis: Future Directions 2*, C. M. Cuadras and C. R. Rao, Eds., North-Holland Series in Statistics and Probability. North-Holland, Amsterdam, Jan. 1993, pp. 171–197.

[3] Curran, P. J., Bauer, D. J., and Willoughby, M. T.

Testing Main Effects and Interactions in Latent Curve Analysis.

Psychological Methods 9, 2 (June 2004), 220–237.

[4] GRIMM, K. J., ZHANG, Z., HAMAGAMI, F., AND MAZZOCCO, M.

Modeling Nonlinear Change via Latent Change and Latent Acceleration Frameworks: Examining Velocity and Acceleration of Growth Trajectories.

Multivariate Behavioral Research 48, 1 (Jan. 2013), 117–143.

[5] JOHNSON, T. L., AND HANCOCK, G. R.

Time to criterion latent growth models.

Psychological Methods 24, 6 (Dec. 2019), 690-707.

- [6] MCCORMICK, E. M.
 Deriving models of change with interpretable parameters: linear estimation with nonlinear inference.
- [7] McCormick, E. M., and Bauer, D. J. How should we model the effect of "change" - or should we?, July 2023.
- [8] MCCORMICK, E. M., CURRAN, P. J., AND HANCOCK, G. R. Latent growth factors as predictors of distal outcomes. *Psychological Methods* (June 2024).
- [9] PREACHER, K. J., AND HANCOCK, G. R.
 Meaningful aspects of change as novel random coefficients: A general method for reparameterizing longitudinal models.
 Psychological Methods 20, 1 (2015), 84–101.