Comparing Alternatives to the Three-Form Planned Missing Data Design

Alexander M. Schoemann¹ E. Whitney Moore¹ Emily M. Meier¹ Kelly L. Reburn² Mark C. Bowler¹

¹East Carolina University

²IO Psych Group

M3 2024

- Planned missing data designs
 - 3 forms design
- Complete data vs. planned missing
 - Real data example
- Random missing vs. planned missing
 - Simulation study

- Missing data does not have to be a problem!
- Two types of planned missing data designs:
 - Time-based planned missing data designs
 - Control participant entry into the study (e.g., cohort sequential design)
 - Participant based planned missing data designs
 - Randomly assign participants to receive only a subset of items

- Item based planned missing design
- Items are divided into 4 "sets"
 - Set X: items administered to all participants
 - $\bullet\,$ Sets A, B, and C: Items administered to 2/3 of participants
 - Participants are randomly assigned to receive 2 of the 3 sets (e.g. AC)

Three-form planned missing design

Х	А	В	С
1	1	1	0
1	1	0	1
1	0	1	1
	X 1 1 1	X A 1 1 1 1 1 0	X A B 1 1 1 1 1 0 1 0 1

Three-form planned missing design

Three-form planned missing design

Advantages

- More items per participant!
- Or. . . less fatigue per participant!
- Less unplanned missing data (Harel, Stratton, & Aseltine, 2011)
- Reduced practice effects (Jorgensen, et al., 2014)

Disadvantages

- Less power than a complete data design
 - Latent variable models alleviate this
- Requires a "large" sample size
 - 100+ participants (Jia, et al., 2014)

- Complete data design
 - Assign all participants to receive all items
- Random planned missing
 - Assign each participant to receive a random subset of all items.

• Greater power and less unplanned missing than complete data designs (Harel et al., 2015)

- Greater power and less unplanned missing than complete data designs (Harel et al., 2015)
- Increased fatigue for participants

- Greater power and less unplanned missing than complete data designs (Harel et al., 2015)
- Increased fatigue for participants
- How do parameter estimates compare between complete data and planned missing designs?

- Survey of 892 real-estate agents
- Survey had a total of 163 items including demographics and various work based constructs
- Pariticipants randomly assigned to complete all items (n = 131) or complete a subset (n = 872)
 - Subset of items were 110 total items based on a 3-forms design
 - Planned missing had ~33% missing

- Compare factor model with two constructs
 - Construct 1 Work Engagement: 9 items
 - Construct 2 Turnover Intentions: 4 items
- Engagement assessed at the start of the study, turnover intentions assessed at the end of the study
- Items for constructs were split across the X, A, B, and C sets

- Use multiple group CFA to compare:
 - Factor structure
 - Factor loadings
 - Item intercepts
 - Item residual variances
 - Latent means variance and covariances

- Established configural, and weak invariance $\chi^2(11) = 8.57, p = .661, \Delta CFI = .000$
- Established strong invariance? $\chi^2(11) = 53.78, p < .001, \Delta CFI = .007$
 - Driven by two intercepts in engagement. Small differences in intercepts (d < .3)
- Established strict invariance? $\chi^2(13) = 30.22, p = .004, \Delta CFI = .003$
 - Driven by one variance in turnover intentions.
 - No systematic differences in residual variances

- Difference in latent means $\chi^2(2)=97.77, p<.001$
 - No significant difference in turnover intention means
 - Mean of engagement is lower in the complete data group (d = 1.10, p < .001)
- No difference in latent variances $\chi^2(2) = 1.87, p = .394$
- Difference in latent covariance $\chi^2(1) = 3.99, p = .046$
 - r = -.37 for missing data and r = -.56 for complete data

- No major differences in parameters between planned missing and complete data designs
- No evidence of fatigue from participants in parameters
 - $\bullet\,$ Survey may be too short (~15 minutes) to observe fatigue effects
 - Almost no unplanned missing (unplanned missing $<\!\!1\%$ in both conditions)
 - Survey was (relatively) "high stakes" with strong motivation to respond
 - Small n with complete data

- Easily implemented in survey software (e.g. Qualtics)
- Can include all variables, or a subset of variables
 - e.g., collect complete data on demographics and planned missing on other variables
- Increased patterns of missing data compared to 3 forms design

- Simulation study comparing 3 forms design with random planned missing data
- CFA model: 4 latent variables, 6 indicators each
 - 24 total items
 - Factor loadings between .5 and .7 within each factor
 - Latent correlations between .2 and .4

- 2 missing data conditions
 - 3 forms missing data have 6 items in each set
 - Distributed across each factor
 - 25% missing data
 - Random planned missing: 25% missing for each participant
- 4 sample sizes (100, 200, 400, 700)
- All missing data handled with FIML

- Convergence 100% in all conditions
- Random planned missing replications too 2-3 times longer to fit
- No differences in parameter estimates, standard errors, or bias across 3-forms or random missing data designs
 - No differences in power for parameters

- 3-forms planned missing and random planned missing perform similarly in the simulation study
- Random planned missing designs may be easier to program in survey software
- Random planned missing designs may be harder to fit due to larger numbers of missing patterns
 - Potential issues with coverage when not all items in a survey are used in a model
- 3-forms designs may work better in longitudinal designs
 - Especially with practice effects

- Complete data, 3-form planned missing, and random planned missing designs perform similarly
 - With cross-sectional latent variable models
- The choice of design depends on survey length, anticipated modeling strategy, and ease of implementation

- Questions?
- email: schoemanna@ecu.edu