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Motivation

• Traditional mediation analysis typically examines the relations among an
intervention, a time-invariant mediator, and a time-invariant outcome variable

• Obtain repeated assessments over time resulting in intensive longitudinal data

• Extend the traditional mediation analysis to incorporate time-varying variables as
well as time-varying effects
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Time-varying coefficient models

• Time-varying coefficient models have been used to model the time-varying effects of
an independent variable on a dependent variable

• For each individual, i

• The outcome variables are measured at multiple time points {tij , j = 1, 2, . . . ,Ti}
• The data collected are {tij ,Xi(tij),Yi(tij)}, for i = 1, 2, . . . , n, j = 1, 2, . . . ,Ti
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Time-varying coefficient models

• Example:
Yij = β0(tij) + Xi(tij)β1(tij) + ϵi(tij),

where β0(t) and β1(t) are time-varying coefficient functions and are assumed to be
smooth functions of time

• The error term ϵi(t) is a zero-mean stochastic process with covariance function,
γ(s, t), between time s > 0 and t > 0
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Time-varying mediation models

• The model can be extended to the mediation model, and given below,

Yij = β0Y (tij) + Xi(tij)γ1(tij) +Mi(tij)β2(tij) + ϵiY (tij)

Mij = β0M(tij) + Xi(tij)α1(tij) + ϵiM(tij)

• γ1(tij) is the time-varying effect of an intervention, X , on the outcome, Y , that is
not due to the mediator, M

• β2(tij) is the time-varying effect of M on Y

• α1(tij) is the time-varying effect of X on M
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Time-varying mediation models

• Define the time-varying indirect or mediated effect as α1(tij)β2(tij), the product of
the two functions

• β0Y (tij) and β0M(tij) are the time-varying intercepts and ϵiY (tij) and ϵiM(tij) are the
error terms in the model for Yij and Mij , respectively

• The two models are estimated simultaneously
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Time-varying mediation models

• There are essentially two estimation approaches for time-varying effect models:
splines and local smoothing methods

• Local smoothing methods, which locally approximate coefficient functions by linear
or polynomial functions

• We focus on spline methods, specifically cubic spline
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Time-varying mediation models

• Local smoothing methods
• Pros: Easy to use, less computation, acceptable results
• Cons: Runge’s phenomenon

• Cubic Spline
• A special case for spline interpolation
• Global fit
• Avoid Runge’s phenomenon
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Results

• Simulation studies

• Wisconsin smoker’s health study
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Simulation studies

Models:

1. α1(t) = 10 + 12t3, γ1(t) = −20− 18t, β2(t) = 50 + 150t2,
(s, t) = 15 exp(−0.3|s − t|)

2. α1(t) = 15 + 8.7 sin(2πt), γ1(t) = 4− 17(t − 1/2)2,
β2(t) = 1 + 2t2 + 11.3(1− t)3, γ(s, t) = 15 exp(−0.3|s − t|)
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Simulation Model 1
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Figure: Local polynomial smoothing and cubic spline interpolation for Model (1) with 10 equally spaced time
points.
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Simulation Model 1
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Figure: Local polynomial smoothing and cubic spline interpolation for Model (1) with 10 equally spaced time
points.
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Simulation Model 2
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Figure: Local polynomial smoothing and cubic spline interpolation for Model (2) with 10 equally spaced time
points.
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Simulation Model 2
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Figure: Local polynomial smoothing and cubic spline interpolation for Model (2) with 10 equally spaced time
points.
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Performance of Simulation Models

• The mean absolute deviation error (MADE)

MADE = (4T )−1
T∑
j=1

|θ(tj)− θ̂(tj)|
range(θ)

,

• The weighted average squared error (WASE)

WASE = (4T )−1
T∑
j=1

|θ(tj)− θ̂(tj)|
range2(θ)
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MADE of Model 2

Figure: Local polynomial smoothing and cubic spline interpolation for Model (2) with 10 equally spaced time
points.
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WASE of Model 2

Figure: Local polynomial smoothing and cubic spline interpolation for Model (2) with 10 equally spaced time
points.
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Winsconsin Smoker’s Health Study

Figure: Mediation effect of varenicline on cessation fatigue via craving using local polynomial smoothing.
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Winsconsin Smoker’s Health Study

Figure: Mediation effect of varenicline on cessation fatigue via craving using cubic spline interpolation.
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Winsconsin Smoker’s Health Study

Figure: Mediation effect of cNRT on cessation fatigue via craving using local polynomial smoothing.
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Winsconsin Smoker’s Health Study

Figure: Mediation effect of cNRT on cessation fatigue via craving using cubic spline interpolation.
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Conclusions

• Propose an estimation approach for time-varying effect models via cubic spline
interpolation

• Validated the proposed model which can be extended to other applications in which
intensive longitudinal data
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