An estimation approach for time-varying effect models using cubic splines

Jingwei Li, Megan E. Piper, and Donna L. Coffman

Department of Psychology
University of South Carolina

Department of Medicine
University of Wisconsin Madison

Modern Modeling Methods Conference 2024

June 25, 2024
Overview

1. Motivation

2. Methods

3. Results
 - Simulation studies
 - Wisconsin Smoker’s Health Study

4. Conclusions
Motivation

- Traditional mediation analysis typically examines the relations among an intervention, a time-invariant mediator, and a time-invariant outcome variable.
- Obtain repeated assessments over time resulting in intensive longitudinal data.
- Extend the traditional mediation analysis to incorporate time-varying variables as well as time-varying effects.
Time-varying coefficient models have been used to model the time-varying effects of an independent variable on a dependent variable.

For each individual, i

The outcome variables are measured at multiple time points $\{t_{ij}, j = 1, 2, \ldots, T_i\}$

The data collected are $\{t_{ij}, X_i(t_{ij}), Y_i(t_{ij})\}$, for $i = 1, 2, \ldots, n, j = 1, 2, \ldots, T_i$
Time-varying coefficient models

• Example:

\[Y_{ij} = \beta_0(t_{ij}) + X_i(t_{ij})\beta_1(t_{ij}) + \epsilon_i(t_{ij}) , \]

where \(\beta_0(t) \) and \(\beta_1(t) \) are time-varying coefficient functions and are assumed to be smooth functions of time.

• The error term \(\epsilon_i(t) \) is a zero-mean stochastic process with covariance function, \(\gamma(s, t) \), between time \(s > 0 \) and \(t > 0 \).
Time-varying mediation models

- The model can be extended to the mediation model, and given below,

\[Y_{ij} = \beta_0 Y(t_{ij}) + X_i(t_{ij})\gamma_1(t_{ij}) + M_i(t_{ij})\beta_2(t_{ij}) + \epsilon_i Y(t_{ij}) \]

\[M_{ij} = \beta_0 M(t_{ij}) + X_i(t_{ij})\alpha_1(t_{ij}) + \epsilon_i M(t_{ij}) \]

- \(\gamma_1(t_{ij}) \) is the time-varying effect of an intervention, \(X \), on the outcome, \(Y \), that is not due to the mediator, \(M \)
- \(\beta_2(t_{ij}) \) is the time-varying effect of \(M \) on \(Y \)
- \(\alpha_1(t_{ij}) \) is the time-varying effect of \(X \) on \(M \)
Time-varying mediation models

• Define the time-varying indirect or mediated effect as $\alpha_1(t_{ij})\beta_2(t_{ij})$, the product of the two functions

• $\beta_{0Y}(t_{ij})$ and $\beta_{0M}(t_{ij})$ are the time-varying intercepts and $\epsilon_{iY}(t_{ij})$ and $\epsilon_{iM}(t_{ij})$ are the error terms in the model for Y_{ij} and M_{ij}, respectively

• The two models are estimated simultaneously
Time-varying mediation models

- There are essentially two estimation approaches for time-varying effect models: splines and local smoothing methods.
- Local smoothing methods, which locally approximate coefficient functions by linear or polynomial functions.
- We focus on spline methods, specifically cubic spline.
Time-varying mediation models

- **Local smoothing methods**
 - Pros: Easy to use, less computation, acceptable results
 - Cons: Runge’s phenomenon

- **Cubic Spline**
 - A special case for spline interpolation
 - Global fit
 - Avoid Runge’s phenomenon
Results

- Simulation studies
- Wisconsin smoker’s health study
Simulation studies

Models:

1. $\alpha_1(t) = 10 + 12t^3$, $\gamma_1(t) = -20 - 18t$, $\beta_2(t) = 50 + 150t^2$, $\gamma(s, t) = 15 \exp(-0.3|s - t|)$

2. $\alpha_1(t) = 15 + 8.7 \sin(2\pi t)$, $\gamma_1(t) = 4 - 17(t - 1/2)^2$, $\beta_2(t) = 1 + 2t^2 + 11.3(1 - t)^3$, $\gamma(s, t) = 15 \exp(-0.3|s - t|)$
Simulation Model 1

Figure: Local polynomial smoothing and cubic spline interpolation for Model (1) with 10 equally spaced time points.
Simulation Model 1

Figure: Local polynomial smoothing and cubic spline interpolation for Model (1) with 10 equally spaced time points.

\[\alpha_1(t - \delta t) \beta_2(t) \]
Simulation Model 2

\[\alpha_1(t - \delta t) \beta_2(t) \]

Figure: Local polynomial smoothing and cubic spline interpolation for Model (2) with 10 equally spaced time points.
Simulation Model 2

Figure: Local polynomial smoothing and cubic spline interpolation for Model (2) with 10 equally spaced time points.
Performance of Simulation Models

• The mean absolute deviation error (MADE)

\[\text{MADE} = (4T)^{-1} \sum_{j=1}^{T} \frac{|\theta(t_j) - \hat{\theta}(t_j)|}{\text{range}(\theta)}, \]

• The weighted average squared error (WASE)

\[\text{WASE} = (4T)^{-1} \sum_{j=1}^{T} \frac{|\theta(t_j) - \hat{\theta}(t_j)|}{\text{range}^2(\theta)}. \]
MADE of Model 2

Figure: Local polynomial smoothing and cubic spline interpolation for Model (2) with 10 equally spaced time points.
WASE of Model 2

Figure: Local polynomial smoothing and cubic spline interpolation for Model (2) with 10 equally spaced time points.
Figure: Mediation effect of varenicline on cessation fatigue via craving using local polynomial smoothing.
Figure: Mediation effect of varenicline on cessation fatigue via craving using cubic spline interpolation.
Figure: Mediation effect of cNRT on cessation fatigue via craving using local polynomial smoothing.
Figure: Mediation effect of cNRT on cessation fatigue via craving using cubic spline interpolation.
Conclusions

- Propose an estimation approach for time-varying effect models via cubic spline interpolation
- Validated the proposed model which can be extended to other applications in which intensive longitudinal data
Thank You!