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Multiple Baseline Design

Multiple baseline design (MBD) is comprised of interrupted time series data
from multiple cases, settings, or behaviors where an intervention is
Introduced sequentially within different time series (Baek & Ferron, 2013;
Ferron et al., 2010).

» The basic interrupted time series in MBD include two phases: baseline
and treatment.

 Inferences about the intervention are usually made by comparing
different conditions (baseline vs. treatment) presented to cases over time.
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Challenges

Nonnormal outcomes in
SCEDs such as count and
proportion data

Autocorrelated count data
with trend effects

Overdispersion and Zero-
inflation

Model selection of optimal
distributions



I Count Distributions

A

Frequency

Frequency

25004 mean = 4.99, variance =492
2000 -
1500 4
10004
) I I
0+ -I I.-—___
0 5 10 15 20
Poisson Values
25004 mean = 3.98, variance = 8.06
2000 -
15004
1000 4
) II
0. II III_
0 5 10 15 20

ZIP Values

Frequency

Frequency

25004 mean = 4.97, vanance = 9.96
2000+
1500 4
1000 4
) I II
0 5 10 15 20
NB Values
25004 mean = 4 07, vanance = 11.97
2000+
1500 A
1000 4
) II IIII
04 IIIIIIIIIllllll.__._.lll._....
0 5 10 15 20

ZINE Valuses



I GLMMs for SCEDs

Y;; ~ Poisson (4;;) Y;; ~ Poisson (1;;)
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The Poisson distribution assumes that the E(Y) = Var(Y), which is often violated due to a data issue called
overdispersion.




Overdispersion

Overdispersion in count data occurs when there is excessive variance than what a Poisson can deal with.
» Overdispersed count data: Var(Y) > E(Y) =4

Overdispersion source: correlated measurements, extra noise, and zero-inflation.
Overdispersion is not uncommon for count data in SCEDs (Pustejovsky et al., 2019).

Ignoring overdispersion could lead to biased standard errors and inflated Type | error rates (Hilbe, 2011, 2014; L.
etal., 2023).



I Models to Handle Overdispersed Count Data

Negative binomial: Y;; ~ Negative binomial (Aij, 9)
A2}
o

e E(Y)=Aandvar(Y) =21+ 6>0

Observation-level random effects (OLRE) model: ¥;;~ Poisson (4;;)

Li, H., Luo, W., Baek, E., Thompson, C. G., & Lam, K. (2023). Multilevel modeling in single-case studies with
count and proportion data: A demonstration and evaluation. Psychological Methods. Advance online
publication. https://doi.org/10.1037/met0000607



GLMMs with SCED count data
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I Models to Handle Zero-Inflated Count Data

ZIP model:

Count component: * When data are zero-inflated, ZIP and ZINB models lead to

Y;; ~ Poisson (1;;) more accurate estimates for the treatment effect (y10).

Level I: log[ﬂij) = Poj + p1jPhase;;

Ievel 2- {5::';' = Yoo + Uo; « When data are generated from Poisson and NB, ZIP and ZINB
Bij = Y10 + Uy lead to more biased estimates for the treatment effect than

) Poisson and NB models.
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ZINB model:
Y;; ~ Negative Binomial (/'{U-, 9)

Li, H., Luo, W., & Baek, E. (2024). Multilevel modeling in single-case studies with zero-inflated and overdispersed
count data. Behavior Research Methods. Advance online publication. https://doi-org/10.3758/513428-024-02359-7
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A Remaining Issue

» Most applied researchers are not aware of how to choose an appropriate distribution
when dealing with SCED count data using GLMMs.

 \arious model selection approaches
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I A Multi-stage Framework
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I Model Selection Strategies

Strategies

Overdispersion

Zero-inflation
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Model selection of GLMMs with SCED count data

Research questions

1) Which model selection strategies produce the least
model selection bias?

O 2) Which model selection strategies yield the most accurate

treatment effect estimates and reliable inferential statistics?

3) ) Is there a relationship between model selection bias and the
performance of the treatment effect estimator and inferential statistics?




Simulation Conditions

Parameter Value

10 (starting points of the intervention: 3, 4, 6, 7) or

Series length (7) 20 (starting points of the intervention: 6, 8, 12, 14)

Number of cases () 4 or 8
Session length (7) 10 minutes
Baseline level () log (0.05)
Treatment effect (y4) 0,1.79, 2.48, or 3
Between-case variance
Baseline level (c,) 1.0
Treatment effect (c2;) 1.0
Correlation (73,94,1) —0.5
Poisson/NB model
Log odds of excessive zeros () —00
Treatment effect on excessive zeros (f3;) —
Dispersion parameter (6) 2.0, 5.0 or +oo
Z1P/ZINB model
Log odds of excessive zeros () —0.85, -1.39 or —2.19
Treatment effect on excessive zeros (f3;) log (0.10)
Dispersion parameter (6) 2.0, 5.0 or +oo

A total of 16, 32, 48, and 96 conditions for data scenarios corresponding to the Poisson, NB, ZIP, and ZINB,
respectively. In each condition, | simulated 2000 independent data sets (i.e., replications).



Data Analysis

Fitted Poisson, NB, ZIP, and ZINB models estimated by adaptive Gauss quadrature (AGQ) using the R package

GLMMadaptive.
» The Wald test was adopted to conduct statistical inference for treatment effects.

Performance measures:

« Hitrate

» Bias, coverage rate of the treatment effect estimator
e Type I error rates
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I Performance Overview

Hit Rate  Bias Coverage

Strategy Rate Type I Error

(rank) (rank) (rank) Rate (rank)
Poisson and NB

1. Pearson (¢ = .05) & PB (a¢ = .05) TT77(7) 026(8) 913 (4) 071 (8)

2.LRT (a = .05) & PB (a = .05) 854 (2) .027(9) 914 (3) 070 (7)
""""" 3.Pearson (o = .05) & PB(a =.20)  .700(10) .005(1) .912(8) .067(Q2) |
__ 4IRT(a=05)&PB(@=20) . 775(8) 007 @) 912(7)  067(1) ]

5. Pearson (@ = .20) & PB (a = .05) 825 (4) 027 (10) 914 (2) 069 (6)

6.LRT (@ =.20) & PB (a = .05) 865 (1) 026(7)  .914(1) 069 (5)
""""" 7.Pearson (@ = .20) & PB (@ = .20)  .747(9) .007(3) .912(6) .068(3) |
________ 8.LRT(a = .20)&PB(a =.20)  _ .790(6) .008(4) .912(5)  .068(4) |

9. AIC 825 (3) 016 (6) .911(9) 074 (10)

10. BIC 816(5) .013(5) .910(10) .073(9)
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I Performance Overview

Hit Rate  Bias Coverage

Strategy Rate Type I Error

(rank) (rank) (rank) Rate (rank)
ZIP and ZINB
1. Pearson (o = .05) & PB (o = .05) 037 (7) 249 (7)) 908 (10) 081 (8)
______ 2.IRT(@ =05 &PB(a=05) 0318 -255(9) 909(6) .079(6)
I 3. Pearson (@ = .05) & PB (a = .20 ) 219 (3) 156 (3) .910(4) 073 (1)
4 IRT(ax=.05)&PB(a=.20) ____ .201(4 _.172(5) .010Q1)  .074(2) |
5. Pearson (¢ = .20) & PB (a = .05) 026 (9) 253 (8) .909(7) 080 (7)
6. LRT (¢ = .20) & PB (a = .05) 025(10)  .256(10) .909 (5) 079 (5)
| 7.Pearson (¢ = .20) & PB (@ =.20)  .195(5) .165(4) .910(3) .074(3)
8. LRT (a = .20) & PB (a = .20) 178 (6) A77(6) 910 (2) 076 (4)
- 9.arc 232(2) .153(2) 909(8)  .082(l10)
10. BIC 254 (1) d41 (1) .909 (9) 081 (9)

e



I Type | Error Rate (Poisson and NB)

Type | Error Rate of Treatment Effects as a Function of the Model Selection Strategy and Series Length (1) for
the Poisson and NB Data
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I Type | Error Rate (ZIP and ZINB)

Type | Error Rate of Treatment Effects as a Function of the Model Selection Strategy, Series Length (1) and Log
Odds of Excessive Zeros (B0) for the ZIP and ZINB Data
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Implications and Discussion

» When zero-inflation is not present, the absolute differences in performance measures among various model
selection strategies were not practically significant.

» When zero-inflation is present, the overall low hit rates led to a very high proportion of incorrectly selected models,
such as Poisson and NB models, which in turn caused unacceptable biased estimates of treatment effects for all
strategies
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Recommendations

When there are no zero observations in the outcome measurements:
» Using AIC and BIC to select an optimal model between NB and Poisson distributions to deal with SCED count

data;
* If models are estimated by pseudolikelihood where AIC and BIC are not comparable, I recommend using Pearson’s

chi-squared test with a less penalty for model complexity (e.g., 0=.20), as it has exhibited similar performance as
AIC and BIC.

When zero observations are present in the outcome measurements:

» Using methods with a less penalty for model complexity (e.g., @ = .20) to accommodate zero-inflation.
Information criteria, such as AIC and BIC, can also be adopted to compare all four candidate models.
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