Evaluating Bayesian Transition Diagnostic Classification Models for Reporting Within-Year Progress

Jeffrey C. Hoover & W. Jake Thompson

Accessible Teaching, Learning, & Assessment Systems

Achievement & Assessment Institute

Importance of Reporting Within-Year Progress

- Supplements performance results by providing additional information to students and parents
- Provides feedback to educators and administrators
- Supports the theory of action for assessments when it involves making progress

Diagnostic Modeling

- Diagnostic classification models (DCMs) assume discrete latent constructs (i.e., attributes)
 - For DCMs, the attributes are frequently binary and labeled as masters and nonmasters
- DCMs estimate the probability that each examinee is a member of each latent class
 - Outputs attribute mastery profiles

Log-Linear Cognitive Diagnosis Models (LCDMs)

- One of the more prevalent DCMs
- Uses an approach similar to ANOVA
 - Measurement model sums the log-odds for the mastered attributes

Transition Diagnostic Classification Models (TDCMs)

- The longitudinal extension of the LCDM
 - The TDCM uses the LCDM measurement model with latent transition analysis
- Models changes in attribute mastery statuses over time
- Item invariance is assumed across assessment points
 - E.g., items are just as difficult at Time 2 as at Time 1

Objectives

- Compare TDCM-based estimates of within-year progress to LCDM-based estimates of within-year progress in a simulation study
 - TDCM
 - Full-year LCDM (separately scoring data from each window)
 - Window-specific LCDMs

Simulation Factors

Factor/Level	Description		
Transition from mastery to nonmastery			
Unconstrained	U[0.00, 1.00]		
Moderate constraint	U[0.00, 0.50]		
Large constraint	U[0.00, 0.15]		
	T THE UNIVERSITY OF		

Data Structures

- We simulated the data based on data collected from an operational alternate assessment from 2016—2017 to 2021—2022
 - Assessment is intended to be scaled with a DCM
 - Skills are individually modeled using single-attribute LCDMs
 - Produces TDCMs with 4 possible transitions

Simulated Parameters

 We based the item parameters and base rate of mastery in each repetition on randomly selected models from the alternate assessment's operational calibration

Produces operationally realistic parameter values

• The items in the alternate assessment are assumed to be fungible

Example Transition Matrix

Fall	Spring				
	Nonmaster	Master			
Nonmaster	.30	.15			
Master	.20	.35			

Data Simulation

- Simulate number of examinees and items based on data structure
- Establish true parameter values
- Assign true transitions to students
- Simulate item responses based on true transition and parameter values

Model Evaluation

- Classification accuracy
 - Defined as the percent correct
- Measured at two levels
 - Overall classification accuracy (student-level transitions)
 - Marginal classification accuracy (student-level mastery in the fall and spring)

Model Estimation Results

- 900 estimated TDCMs
- 2,566 estimated LCDMs
 - 872 (97%) full-year LCDMs
 - 1,694 (94%) window-specific LCDMs
- All 134 LCDMs that did not complete took longer than 12 hours to estimate

Classification Accuracy

Type of classification accuracy	Transition constraint	TDCM	Full-year LCDM	Window-specific LCDM
Overall	Unconstrained	.80	.60	.66
	Moderate	.78	.58	.61
	Large	.78	.63	.65
Marginal – Fall	Unconstrained	.88	.74	.77
	Moderate	.87	.70	.72
	Large	.86	.70	.72
Marginal – Spring	Unconstrained	.89	.78	.82
	Moderate	.88	.77	.79
	Large	.88	.81	.83

Summary of Results

- The TDCM showed higher classification accuracy than the LCDM-based approaches
- Classification accuracies were consistent across the transition constraint

Discussion

- LCDM-based approaches appeared to miss significant aspects of within-year progress
- Full-year LCDM aggregates data across windows
 - Changes in attribute mastery may be obscured
- Window-specific LCDM did not assume item invariance
 - Progress as evidenced by improved performance may be interpreted as easier items

Thank you!

Contact me at:

jhoover4@ku.edu

Accessible Teaching, Learning, & Assessment Systems

Achievement & Assessment Institute