McGill

UNIVERSITY

Comparing the Accuracy of Three Predictive
Information Criteria for Bayesian Linear
Multilevel Model Selection

Sean Devine, Carl F. Falk, Ken A. Fujimoto
McGill University
MMM 2024, UConn

[seandamiandevine@gmail.com]



Introduction

Linear modeling

yi = Bo + b1 X1; + €
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Introduction

Linear multilevel modeling

Yij = Yoo T Upj T (V10 + u1j)X1ij + €
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Introduction

Linear multilevel modeling

o _

L= Cluster




Introduction

The popularity of multilevel modeling

* From 2007 to 2017 there has been a threefold increase in the
number of published psychology articles that utilize multilevel
modeling (Huang, 2018)

* The advance of easily accessible software for fitting linear
multilevel models has likely contributed to this trend (e.g., Ime4 in
R, Bates et al., 2015)

* Many such tools estimate multilevel models in a frequentist framework,
using maximum likelihood estimation



Introduction

The popularity of Bayesian multilevel modeling

* Similarly, advances in computational
efficiency have contributed to the
popularity of Bayesian methods for CHOOSEY
estimating multilevel models ——

* Supported by software: brms (Burkner, 2017),
built on Stan (Carpenter et al., 2017)

OURFIGHTER

* Bayesian estimation offers numerous
advantages over frequentist analysis

* Direct examination of posterior uncertainty

* |ncorporation of prior beliefs into parameter
estimates




Introduction

Model selection for Bayesian MLMs

* Despite some advantages of Bayesian estimation, multilevel
model selection can be more complex

* No simple significance test available (e.g., likelihood ratio test)

* This is problematic

* |tis often challenging to determine which of a set of candidate models is
the “best model”

* This question is of central importance because it is regularly this winning
model from which scientific conclusions will be drawn



Introduction

Information Criteria for Bayesian models

* Researchers have proposed several single-valued metrics that
quantify the predictive accuracy of a Bayesian multilevel model.:
Information Criteria

* Quantify the degree to which the observed data are likely to occur under the proposed
model (while accounting for uncertainty in this likelihood)

* Penalize more complex models in favor of more parsimonious models

* Three particularly popular metrics for Bayesian MLMs:
* Deviance information criterion (DIC; Spiegelhalter et al., 2002)
* Widely applicable information criterion (WAIC; Watanabe, 2010)

* An approximation to the leave-one-out cross-validation based on Pareto smoothing of
the importance sampling weights (LOO-CV; Vehtari et al., 2017)



Introduction

DIC, WAIC, and LOO-CV (quickly)

DIC WAIC LOO-CV
DIC = —2Inp (y18) + 2pp _— lppd = elppd
Yje1 Ziy g Xeap(vis10°) | _ ZZJ:IH< §=1Wisjp(yij|95)>
1 B S S
Pp = —2 (E §=1 ll’lp(yles) - - j=1i=1 s=1 Wij
= w —
J nj
Inp (}’|9)) Zj:l Ziil(vsil lnp(yij | 05)) LOO-CV = —2elppd
WAIC = —2(lppd — pw)

* More details provided in the supplement, but equations on the screen for your viewing pleasure
* Toremember:
* The output for each criterion is a single float value (e.g., 741.44) and this number differs
between metrics; lower is better



Introduction

Two other wrinkles to consider
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Introduction

Two other wrinkles to consider

* Normally, the relevant background would be covered at this point
* Simulate data, fit Bayesian MLMs, compute ICs, see what happens

* However, two additional concepts are relevant here:
1. Model selection uncertainty
2. Marginal versus conditional parameter estimation
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Introduction

Wrinkle

1: Model selection uncertainty

* Historically, model selection has been based on singular point
estimates of fit indices
* Fit a series of candidate models, compute ICs, choose model with best IC

* This approach ignores the sampling variability in selection criteria
themselves (Preacher & Merkle, 2012)

* Accordingly, here we investigate MLM model selection using the
“lowest value wins” approach and one which considers

uncertainty:

* DIC: 4 points distance (Spiegelhalter et al., 2002)
« WAIC and LOO-CV: 1 standard errors in scores (Vehtari et al., 2017)
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Introduction

Wrinkle #2: Estimation methods

* In a multilevel modeling context, there is more than one possible form to the
likelihood

* |In the current context, there is debate as to whether using conditional or marginal
estimation procedures yield more stable results (Merkle et al., 2019)

Conditional Marginal
Summary Estimate cluster-level effects Estimate fixed effects and random
separately, under assumptions of | variance coefficients, and infer,
multivariate normality but not estimate, random effects

* Conditionalis the default in brms, Marginalis used in Ime4

* We implemented our own marginal estimation software in Stan to compare IC
performance across estimation methods
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Method

General approach

1. Simulate 28,800 datasets from a known multilevel linear model

2. The generated datasets varied with respects to

* level-1 sample size (e.g., number of trials in an experiment)

* level-2 sample size (e.g., number of participants in an experiment)

* the magnitude of the random effect (larger or smaller random effect variance)
* the magnitude of the fixed effect size (larger or smaller effect sizes)

3. We then modelled data using five specifications: the data generating model
and five mispecified models
* Using conditional or marginal estimation

4. We then computed ICs and selected models using a “lowest value wins” or
model-selection uncertainty rule, described earlier
 Computed accuracy as the rate of correctly identifying the data generating model

15



Method

Data-generating model

Model A
Yij = Yoo T ugj + (Yiotw1j)X1;; + V20X2;; + Ryj

e y;; is the observed value for a continuous variable for observation i in cluster j
® Yoo is the fixed intercept (i.e., the mean value across clusters and observations)
® Uy, 1s the cluster-level deviation (i.e., random effect) from y, for the intercept
®* Y, 1s the fixed slope for X;

e u,; is the cluster-level deviation (random effect) from y,,

® ¥, is the fixed slope for X,

2
. . . . T
e (U, uy;) ~MVN(0,X), where X is a variance—covariance matrix, X = [ o P o
Po1 T1

® RijNN(O,O'Z)
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Method

Other model specifications

mo o w

Model Form
A Yij = Yoo + Ugj + (Y10+U1j)X1;; + V20X2; + Ry
B Yij = Yoo t Uoj + V10X1;; +V20X2;; + Rij
C Yij = Yoo + Uoj + (Y10t U1j)X1;; + (V20 + U2j) X2 + Ryj
D Yij = Yoo+ Uoj + (Y10 + Ulj)Xlij + Ryj
E Yij = Yoo + Uoj + (Y10 + Usj)X1;; + V20X2y; + V30X3, + Ry

The (incorrect) absence of a random effect (wrongly assumes le = 0)

The (incorrect

(
(
The (
(

incorrect

presence of a random effect (wrongly assumes T% * 0)

absence of a fixed effect (wrongly assumes y,o = 0)

The (incorrect) presence of a fixed effect (wrongly assumes y3¢ # 0)
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Method

Simulation design matrix

Parameter/Variable Value
Level 1 Sample Size (i) 10, 50, 100
(e.g., observation, person in a class, trial)
Level 2 Sample Size (j) 20, 50, 70
(e.g., classroom, subject, country, cluster)
Yoo 1
Té 0.04,0.16
Y10 0.2,0.4*
T2 0.04,0.16
Y20 0.2,0.4
T% 0
Y30 0
T% 0
Po1 0.1
a? Computed per cell to keep total variance at 1

*y,0 = 0.2 explains roughly 4% of the variance in y, as does 72 = 0.04, because within-cell variance is fixed to 1
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Results

Impact of sample size on accuracy

P(Correct)

1.0

0.8

0.6

0.4

0.2

0.0

DIC

Observation Size
B 10

O 50

O 100

20 50
Cluster Size

70

P(Correct)

0.8 1.0

0.6

0.4

0.2

0.0

Conditional Estimation

20

WAIC

50

Cluster Size

70

P(Correct)

0.8 1.0

0.6

0.4

0.2

0.0

20

LOO

50

Cluster Size

70

25



Results

Impact of sample size on accuracy
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Results

Impact of sample size on accuracy
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Results

Impact of sample size on accuracy
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Results

Other model selection rates
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Results

Other model selection rates
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Conclusions

Five main takeaways

1. WAIC and LOO-CV Outperform DIC

* Consistent with past work in non-multilevel contexts (Ando, 2011)
 WAIC and LOO-CV outperformed the DIC by more than 10 percentage points in most cases
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Conclusions

Five main takeaways

1. WAIC and LOO-CV Outperform DIC
2. Level-1 Sample Size Strongly Affects WAIC and LOO-CV Accuracy

* While WAIC and LOO-CV outperformed the DIC in the aggregate, when fit to data with a small number
of observations (here, 10) per cluster, performance across all three metrics was comparable

o
™ |Observation Size
| 10

O 50
@ 0O 100
o

0.6

I Similar performance at low J

P(Correct)

0.4

0.2

*across estimation methods 35
DIC WAIC LOO



Conclusions

Five main takeaways

1. WAIC and LOO-CV Outperform DIC
2. Level-1 Sample Size Strongly Affects WAIC and LOO-CV Accuracy

3. The generative model is better recovered under a marginal
estimation strategy

* Using a “lowest value wins” approach, criteria’s accuracy was improved by nearly 10% when
computed on marginal (versus conditional) likelihoods.

36



Conclusions

Five main takeaways

1. WAIC and LOO-CV Outperform DIC
2. Level-1 Sample Size Strongly Affects WAIC and LOO-CV Accuracy

3. The generative model is better recovered under a marginal
estimation strategy

4. When Model Selection is Based on a “Lowest Value Wins” Strategy,
DIC, WAIC, and LOO-CV May be Prone to Overfitting

* When ignoring the uncertainty, the three information criteria we considered tended to select models
that either overfit the random effects structure (Model C) or the fixed effects structure (Model E).

* Using this model selection strategy, more than a third of the decisions may be biased towards overly
complex models
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Conclusions

Five main takeaways

5.

. WAIC and LOO-CV Outperform DIC

Level-1 Sample Size Strongly Affects WAIC and LOO-CV Accuracy

The generative model is better recovered under a marginal
estimation strategy

When Model Selection is Based on a “Lowest Value Wins” Strategy,
DIC, WAIC, and LOO-CV May be Prone to Overfitting

Model Selection Uncertainty Should be Considered When
Interpreting DIC, WAIC, and LOO-CV

* |ncorporating uncertainty, the overall accuracy on all indices increased, and overfitting rates

decreased, by roughly 30 percentage points

* DIC with uncertainty outperformed WAIC and LOO-CV without uncertainty
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Conclusions

Next steps

* A subsequent study in which
* Predictors are correlated
« Sample sizes are smaller
* |CCs are larger
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Simulation values

* Fit with RStan (Stan Development Team, 2024)
* brms for conditional estimation
* Custom stan code for marginal estimation

e 2 chains per model
* 3000 samples/chain (1000 burn-in)
e 288 cells

* 100 samples per cell
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DIC

DIC = —2Inp (¥18) + 2p, Eq. 1
where Inp (yla) is the likelihood of the data based on the posterior mean of the parameters (i.e.,

[ ) and p, is a data-driven bias correction term that is calculated through:

Po =2 GZ‘" P16 ~Inp (ylﬁ))

where the first part inside the parentheses is the posterior mean of the deviances calculated using

Eq.2

the sth sampled values for the parameters (i.e., 8°) during the MCMC sampling process, with

s = 1,...5 and S being the total saved number of sampled values from the posterior

distribution. In other words, p,, is the “mean deviance minus the deviance at the posterior means
of the parameters—that is, it captures the degree to which the likelihood of the data under 0
deviates from the average likelihood of the data under all posterior draws. If this value is large,
there is a large discrepancy between the average likelihood and the likelihood of the data under
the average posterior parameter estimates, suggesting the model is overfitting the data.
Conversely, if p,, is small, it suggests that the posterior is precisely centred around 8 and thus
the number of effective parameters is small. Apart from criticisms about its efficacy as a good

metric for model selection (Ando, 2011), the DIC has also been criticized as not being “fully

Bayesian” because its estimate of the likelihood relies on point estimates, 8, rather than using all

the information contained in the posterior, which is to many Bayesians a key advantage of the
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WAIC

Watanabe-Akaike information criterion (WAIC)

The WAIC is a “fully-Bayesian™ approach to estimating the out-of-sample predictive
accuracy because it is based on the full posterior predictive density of each point, which when
taking the log of it, we have the log pointwise posterior predictive density (lppd), compared with
the DIC, which depends an_a point estimate of the predictive likelihood. By log pointwise
posterior predictive density, we mean that the log probability of each data point y;; given
each 6° and is obtained through:

] nj S
1
ppd = ) > Inz ) p(y,10°)
s=1

j=1i=1

Eq.3

Because the WAIC depends on the Ippd, the likelihood of each data point is evaluated using
information from the entire posterior distribution, rather than only its central tendency. Similarly,

the penalty term of the WAIC, p,, is applied pointwise to each data point, y;;, as*:

J n Eq. 4
pw =) > (Vi Inp(yy | 6°)

7=1i=1

where, V represents the sample variance computed over the posterior, V3, In p(yi i | 6°) =

2
5., (Inp(y;16°) —Inp(y, [ %)) . These terms are then combined and multiplied by

WAIC = —-2(lppd — pyw) Eq.5
44



LOO

Leave-One-Out Information Criterion (LOOIC)

As mentioned in the introduction, the goal of information criteria is to estimate the
predictive accuracy of a model in a new sample—that is, when applied to new data, what is the
expected likelihood of the new data under this model? A simple way to accomplish this would be
to split the data into two sets, a training and a testing set, to estimate the model on the training
set, and to predict the data in the testing set, noting the discrepancy directly.

Leave-one-out cross-validation (LOO-CV) implements a version of this concept. For a given
data point, y;;, LOO-CV trains the model on all other data points in the sample, y_,;;, and the
predictive likelihood will be computed on y;;:

J nj s
1
LOO-CV = E E lnEE p(¥ily_i;, 0°)
s=1

j=1i=1

Eq. 6

where p(y,- jl Y_ijs 85) is the predictive density for y;; given the sth sampled values from the
posterior distribution based on only y_;;. However, computing p(yi i Iy_ ij»6° ) in this way is
often computationally prohibitive for data with many observations when Bayesian estimation is
used. It is difficult to efficiently sample from the posterior with a single data point removed,
p(G‘ |y_ i ,-), and repeat the process for all data points. To circumvent this issue, Vehtari et al.
(2017) proposed a method to approximate the LOO-CV from the observed posterior draws, using
importance sampling. In short, importance sampling helps researchers learn about features of
some target distribution by drawing samples from a second distribution that may be easier to
sample from. Estimates of the target distribution are weighted by the ratio of the likelihoods of

the distributions, r. Here, this technique is leveraged to infer the LOO posterior, p(8°|y_;;),

from the full data posterior p(8°|y), using raw weights, ;;; = H(Y;WS)’ which can be used to
ij
evaluate the log predictive density at the left-out data point, as:
i P(}’iilos) Eq.7

p(y.-,-ly_,-,-)z S s
=1 ij

However, the values produced by Eq. 7 can be unreliable in some circumstances because the
13js can be unstable. This can occur when the variance and shape of the full data posterior,
p(6°|D), differs appreciably from that of the LOO posterior, p(8°|D_;). For example, if
p(6° [y) has a much smaller variance than p(e |y_, ,) = values will be very large when
sampling the tails of p (6°|y), thus mischaracterizing (i.e., shrinking) the true spread of values in
p(B’ Iy_i i)' To overcome this issue, Vehtari et al. (2022) applied a smoothing procedure to the
extreme raw ratios (73;), with this procedure based on the Pareto distribution, leading to an
updated vector of weights, wy;. Details are presented in Vehtari et al. (2017), but in short these
weights counteract the potential bias from using raw weights. Once the modified weights are
obtained, the LOO expected log pointwise predictive density can be computed as:

Eq. 8
elppd = ZZI ( 5= 12‘2;111’(‘4},';1'9 ))

j=1i=

which when multiplied by —2 yields the LOO-CV on the deviance scale:

LOO-CV = —2elppd Eq.9
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Other results
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Impact of clustering variability on accuracy
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Impact of slope variability on accuracy
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Parameter estimation bias



Avg. A

« A= Distance between estimated y and true y

* Modelchoice doesn’t seem to radically impact fixec
effect accuracy.

Similar bias regardless of estimation strategy
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Avg. A

Random effects discrepancy

Conditional Estimation

Higher ranef bias for marginal estimation
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Random effects discrepancy

A = Distance between estimated t and true
T

Same as with fixed effects...
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Bias by level-2 sample size
conditional

Conditional Estimation
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Bias by level-2 sample size
marginal

Marginal Estimation
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Bias by level-1
conditional
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Bias
mar

by level-1 sample size
i n a Marginal Estimation
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Bias by 75 magnitude
conditional
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Bias by 7§ mag

marginal
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Bias by 7% mag

conditional
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Bias by £ magnitude
marginal

Marginal Estimation
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Bias by y,o magnitude
conditional
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Bias by y,o magnitude

margina
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Bias by 1o, magnitude
conditional
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Bias by 1o, magnitude
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