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Introduction

• Cross-domain latent growth curve (CD-LGC):

o Examines the dynamic interplay between changes over time in 

outcomes and time-varying predictors.

o Concurrently model changes in outcome and predictor variables.

o Explore the relationship between their growth parameters.

o Usually conducted under an SEM framework.
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The Y-measurement model: The X-measurement model:



Cross-domain Analysis of Change

𝜂 = 𝛼 + Γ𝜉 + Β𝜂 + 𝜁
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The Challenge of Missing Data

• Missing Data is common in longitudinal studies (CD-LGC).

• Can occur in the time-varying outcome, the time-varying predictor, or 

both.

• If inappropriately handled, missing data can result in:

→ Biased and less precise estimates

→ Reduced statistical power

→ Diminished generalizability of results



Types of Missing Data

o Missing Completely at Random (MCAR)

o Missing at Random (MAR)

o Missing Not at Random (MNAR)



Estimation Methods

o Listwise Deletion (LD) using Maximum Likelihood

o Full Information Maximum Likelihood (FIML)

o Sequential Fully Bayesian (SFB)

• Complete data (pre-deletion) analysis acted as a benchmark—

representing the best-case scenario without missing data. 



Method 1: LD
• Implemented in R lavaan package as default.

• Only uses complete cases with observed values for all variables.

• Creates a likelihood function for complete cases.

• Maximizes the likelihood across complete cases to estimate the model 

parameters.



Method 2: FIML

• Implemented in many SEM software and packages.

• Widely used methods in handling MAR data.

• Uses all available data points to estimate the parameters of interest, 

without needing to impute missing values. 

• Creates a likelihood function for each observation based on the 

observed data.

• Maximizes the overall likelihood across all observations to estimate 

the model parameters.



Method 3: SFB

• Utilizes all available data (observed and partially observed) to update 

estimates and uncertainties in a sequential manner.

• Missing data are considered parameters.

• Incorporates new data as it becomes available, to refine estimates over 

iterations.



Simulation Study

• Four factors were manipulated across 1000 replications:

1. Missing data scenario: missingness in the time-varying predictor 

vs. missingness in the time-varying outcome 

2. Number of participants: n = 100, 200, or 400

3. Number of measurement occasions: t = 5 or 9

4. Reliability of slope: reliability = 0.5 or 0.8



Complete Data Generation

• Individual growth parameters (𝜋!", 𝜋#", 𝜋′!", and 𝜋′#") generated using 

a multivariate normal distribution, and ε and 𝛿 using a normal 

distribution. 

• X and Y were generated based on:

X = Λ$ξ + δ

Y = Λ%η + ε



Missing Data Generation

• The probability of MAR data expressed as:

o 𝜂# → 1.815

o 𝜂!, 𝜂' → -1.31 and 0.085 (30% at mid timepoint, 40% at last timepoint)

• Indicator R is generated from a binomial distribution.

• R = 1 indicates missing data. 

if outcome Y is missing

if predictor X is missing



CD-LGC Model
• After data generation, a CD-LGC model was fitted to each dataset.

• Primary parameter of interest was 𝛾&#&’# .

• 𝛾&#&’#was estimated via LD, FIML and SFB.

→ LD and FIML: R lavaan package (Rosseel, 2012)

→ SFB: R rjagss package (Plummer, 2023)



Evaluation Statistics

• To evaluate the performance of the estimation methods, three key 

statistics were used: 

o Relative Bias

o Mean Squared Error (MSE)

o Type I Error Rate



Results: missing data in predictor



Results: missing data in predictor



Results: missing data in outcome



Results: missing data in outcome



Results: Type I error rate



Results: Type I error rate



Discussion
• Boosting reliability from 0.5 to 0.8 enhances the performance of all methods.

• LD:
o Severe biases in the presence of missing data.

• SFB:

o Performs well (in terms of bias and Type I error) with 
v high reliability (0.8) 
v larger sample size (N = 200 +)

• FIML:
o Consistently provides the lowest bias and MSE (even for N = 100)
o Deflated Type I error rate given low reliability (0.5) 
o Most effective method for handling relatively reliable data with 

intermittent missingness.



Future Directions

• Assess how other patterns of missingness, such as monotone dropout 

would affect the performance of estimation methods.  

• Assess how MNAR missingness would influence the estimation of key 

parameters.

• Apply these methods to real-world datasets to validate the effectiveness 

of these techniques in practical scenarios.
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